合同矩阵充要条件

两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。

正惯性指数是矩阵正特征值个数,负惯性指数是矩阵负特征值个数。

即合同矩阵的充分必要条件是特征值的正负号个数相同。

证明:

本论证中的所有矩阵先假设为对称矩阵,但不限于对称矩阵。

根据定义,若矩阵A和矩阵B满足
B = P T A P (1.1) B = P^T A P \tag{1.1} B=PTAP(1.1)
则称A与B合同。

根据对称矩阵的性质,可以得出:
A = Q T Λ Q (1.2) A = Q^T \Lambda Q \tag{1.2} A=QTΛQ(1.2)

其中, Λ \Lambda Λ既可以是普通的对角矩阵(即标准型),也可以是规范型(即对角元素的绝对值为1)。

将(1.1)带入(1.2)可得:

B = P T Q T Λ Q P = ( Q P ) T Λ ( Q P ) (1.3) B =P^T Q^T \Lambda Q P =(QP) ^T \Lambda (Q P)\tag{1.3} B=PTQTΛQP=(QP)TΛ(QP)(1.3)

假设 ( Q P ) = R (Q P)= R QP=R,则(1.3)可化为

B = ( R ) T Λ ( R ) (1.4) B =(R) ^T \Lambda (R)\tag{1.4} B=(R)TΛ(R)(1.4)

假若对角矩阵 Λ \Lambda Λ是标准型,则 Λ \Lambda Λ一定可以利用矩阵乘法化为规范型矩阵。

从(1.2)和(1.4)可以得出,若A和B满足合同条件(1.1),等价于合同矩阵有相同的特征值(规范型),结论得证。

注意:

  1. 在对称矩阵中,合同跟相似是等价的,两者能够相互推导。但是在非对称矩阵中,合同和相似是不同的。
  2. 赫尔韦兹定理证明,可以参考对角线主子式的定义,以及特征值之积等于矩阵的行列式,这两点来证明。从第一阶主子式开始,依次递增的推论出第二个、第三个…第n个特征值的正负号。
    在这里插入图片描述
    还是要感谢万能的知乎。

关于赫尔韦兹定理的证明如下:https://zhuanlan.zhihu.com/p/652751194

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
矩阵相似的充要条件是它们有相同的特征值和相同的特征向量。具体来说,设 A 和 B 是 n 阶矩阵,如果存在一个可逆矩阵 P,使得 P^{-1}AP = B,则称 A 和 B 是相似的。 矩阵相似具有以下性质: 1. 相似矩阵具有相同的特征值。设 A 和 B 是相似矩阵,它们有相同的特征值 λ_i。这是因为 P^{-1}AP 和 B 有相同的特征值,而 P^{-1}AP 和 B 是相似的,所以 A 和 B 有相同的特征值。 2. 相似矩阵具有相同的特征向量。设 A 和 B 是相似矩阵,它们有相同的特征值 λ_i 和对应的特征向量 v_i。这是因为 P^{-1}AP 和 B 有相同的特征向量,而 P^{-1}AP 和 B 是相似的,所以 A 和 B 有相同的特征向量。 3. 相似矩阵具有相同的迹。设 A 和 B 是相似矩阵,则它们的迹 Tr(A) 和 Tr(B) 相等。这是因为 Tr(A) = Tr(P^{-1}AP) = Tr(P(P^{-1}AP)) = Tr(PP^{-1}AP) = Tr(A)。 4. 相似矩阵具有相同的行列式。设 A 和 B 是相似矩阵,则它们的行列式 det(A) 和 det(B) 相等。这是因为 det(A) = det(P^{-1}AP) = det(P^{-1})det(A)det(P) = det(A)。 5. 相似矩阵具有相同的秩。设 A 和 B 是相似矩阵,则它们的秩 rank(A) 和 rank(B) 相等。这是因为矩阵相似不改变矩阵的秩。 需要注意的是,相似矩阵是一个等价关系,即满足反身性、对称性和传递性。也就是说,对于任意的矩阵 A,它和自身是相似的;如果 A 和 B 是相似的,则 B 和 A 也是相似的;如果 A 和 B 是相似的,B 和 C 是相似的,则 A 和 C 也是相似的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值