二次型的乘法形式:
( x 1 x 2 x 3 ) ( a d g b e h c f i ) ( x 1 x 2 x 3 ) = a x 1 2 + e x 2 2 + i x 3 2 + ( b + d ) x 1 x 2 + ( c + g ) x 1 x 3 + ( h + f ) x 2 x 3 \begin {pmatrix} x_1 & x_2 & x_3 \end {pmatrix} \begin {pmatrix} a & d & g \\b & e & h\\c & f & i\end {pmatrix} \begin {pmatrix}x_1 \\x_2 \\x_3 \end {pmatrix} =\\ \quad \newline \newline \newline ax_1^2 + ex_2^2 + ix_3^2 + (b+d)x_1x_2 + (c+g)x_1x_3 + (h+f)x_2x_3\\ \newline \\ \newline (x1x2x3) abcdefghi x1x2x3 =ax12+ex22+ix32+(b+d)x1x2+(c+g)x1x3+(h+f)x2x3
( x 1 x 2 x 3 x 4 ) ( a e i m b f j n c g k o d h l p ) ( x 1 x 2 x 3 x 4 ) = a x 1 2 + f x 2 2 + k x 3 2 + p x 4 2 + . . . \begin {pmatrix} x_1 & x_2 & x_3 & x_4\end {pmatrix} \begin {pmatrix} a & e & i & m\\b & f & j & n\\c & g &k &o \\d & h & l & p\end {pmatrix} \begin {pmatrix}x_1 \\x_2 \\x_3 \\x_4 \end {pmatrix} =\\ \quad \newline \newline \newline ax_1^2 + fx_2^2 + kx_3^2 + px_4^2+...\\ \newline \\ \newline (x1x2x3x4) abcdefghijklmnop x1x2x3x4 =ax12+fx22+kx32+px42+...
从上图理解二次型,将之理解为一个二项式,就会简单很多。
使用配方法,必然可以将上述二次型化简为 a x 1 2 + f x 2 2 + k x 3 2 + p x 4 2 . . . ax_1^2 + fx_2^2 + kx_3^2 + px_4^2... ax12+fx22+kx32+px42... 的形式。但是,其系数的符号不变。
两个实对称矩阵合同的充要条件:它们(他们?她们?)的正负惯性指数相同。
还是法语好,万物都有性别。英语就差点,只有72个性别。
正惯性指数:矩阵的特征值中正号的个数;负惯性指数:矩阵负特征值个数。
即合同矩阵的充分必要条件是:特征值的正负号个数相同。
证明:
本文中,所有矩阵为对称矩阵,但又不限于对称矩阵。 \color{red}本文中,所有矩阵为对称矩阵,但又不限于对称矩阵。 本文中,所有矩阵为对称矩阵,但又不限于对称矩阵。
定义:若矩阵A和矩阵B满足:
B
=
P
T
A
P
(1.1)
B = P^T A P \tag{1.1}
B=PTAP(1.1)
,则称矩阵A与B合同。
若B为对称矩阵,则A也是对称矩阵,根据对称矩阵的性质,可以得出:
A
=
Q
T
Λ
Q
(1.2)
A = Q^T \Lambda Q \tag{1.2}
A=QTΛQ(1.2)
其中, Λ \Lambda Λ既可以是普通的对角矩阵(即标准型),也可以是规范型(即对角元素的绝对值为1)。
将(1.1)带入(1.2)可得:
B = P T Q T Λ Q P = ( Q P ) T Λ ( Q P ) (1.3) B =P^T Q^T \Lambda Q P =(QP) ^T \Lambda (Q P)\tag{1.3} B=PTQTΛQP=(QP)TΛ(QP)(1.3)
假设 ( Q P ) = R (Q P)= R (QP)=R,则(1.3)可变化为:
B = R T Λ R (1.4) B =R ^T \Lambda R\tag{1.4} B=RTΛR(1.4)
假若对角矩阵 Λ \Lambda Λ是标准型, Λ \Lambda Λ一定可以根据矩阵乘法简化为规范型矩阵。
从(1.2)和(1.4)可以得出,若A和B满足合同条件(1.1),等价于合同矩阵有相同的特征值(规范型),结论得证。
注意:
- 在对称矩阵中,合同跟相似是等价的,两者能够相互推导。反之,非对称矩阵不满足等价条件。
- 赫尔韦兹定理,可以根据以下2点来证明。
(1)对角线主子式的定义。
(2)特征值之积等于矩阵的行列式。
从第一阶主子式开始,依次递增的推论出第二个、第三个、…、第n个特征值的正负号。
还是要感谢万能的知乎。
参考链接
赫尔韦兹定理的证明:https://zhuanlan.zhihu.com/p/652751194