前言
这个问题琢磨了挺长时间,发现里面有很多需要考虑和注意的
问题描述
n(n<20)个人站成一圈,逆时针编号为1~n。有两个官员,A从1开始逆时针数,B从n开始顺时针数。在每一轮中,官员A数k个就停下来,官员B数m个就停下来(注意有可能两个官员停在同一个人上)。接下来被官员选中的人(1个或者2个)离开队伍。
输入n,k,m输出每轮里被选中的人的编号(如果有两个人,先输出被A选中的)。例如,n=10,k=4,m=3,输出为4 8, 9 5, 3 1, 2 6, 10, 7。注意:输出的每个数应当恰好占3列。
输入:
10 4 3
输出:
_ _ 4_ _ 8,_ _ 9_ _ 5,_ _ 3_ _ 1,_ _ 2_ _ 6,_ 10,_ _ 7
算法思路
这道题目我们大概的思路就是先逆时针找到需要离开的人,再顺时针找到需要离开的人,输出的时候判断一下两个人是否相等就完了。但是去实现的时候,发现有很多问题我们需要注意
第一:如果找需要离开的人?这里用到了非常不常用的循环结构do while,如果不采用这个循环结构,是不好写的,因为在找需要离开的人,首先判断是否已经离开。
第二:我们在设立数组的时候如果不从a[1]开始设立,后面解决起来也是很麻烦的。
代码实现
#include<stdio.h>
#include<stdlib.h>
#define MAX 20
int a[MAX];
int n, k, m;
int go(int start, int d, int t) {
while(t--) {
do{
start = (start+d+n-1)%n + 1;
}while(a[start] == 0);
}
return start;
}
int main() {
while(scanf("%d%d%d",&n,&k,&m) == 3 && n) {
for(int i=1; i<=n; i++) {
a[i] = i;
}
int total = n;
int left = n, right = 1;
while(total) {
//逆时针
left = go(left, 1, k);
//顺时针
right = go(right, -1, m);
printf("%3d", left);
total--;
if(left != right) {
printf("%3d", right);
total--;
}
a[left] = a[right] = 0;
if(total) printf(",");
}
}
}