Deep Learning for Single Image Super-Resolution: A Brief Review_架构部分

本文回顾了2018年前的深度学习在单图像超分辨率领域的进展,重点关注网络架构的演进。从SRCNN的基础架构开始,探讨了其存在的问题,包括输入处理、网络深度和损失函数设计。解决方案包括采用反卷积层、增加网络层数、引入残差结构和密集连接等。此外,还讨论了与传统算法结合的网络,如稀疏编码、集成学习和渐进方法。最后,提出了深度学习提供的先验知识在超分辨率重构中的应用。
摘要由CSDN通过智能技术生成

这篇论文是2018年的,所以总结的SR网络截止到2018年,后续会持续更新…

以SRCNN为baseline,架构如图1,存在三个问题:
(1)双三次插值存在问题:(a)引入了细节平滑效果这些输入可能导致进一步的错误估计图像结构;(b) time-consuming; ©如果上采样的内核未知,不应该用特定的插值方法得到input。如何得到一个有理有据的input?
(2)SRCNN只有三层,更深的网络来达到更好的效果?
(3)loss和架构的设计都没有与SR结合,如何与传统的SR task相融合?
图1 SRCNN架构
图1

问题(1)解决:
直接使用LR图像作为input → 网络中进行上采样 → deconvolution/transposed convolution
FSRCNN是第一个使用deconvolution层的,如图2(1),给定上采样因子,先对其进行插值,然后用步长为1对其进行卷积,通常插值用的是最近邻插值。有两个优势:(a) 计算量降低,速度增加;(b) 更适合下采样核未知的情况。但仍存在两个问题:(a)deconvolution层无法完全恢复好图像中缺失的信息;(b) 最近邻插值中每个方向上的被上采样的特征被重复使用,产生冗余。
为解决该问题,ESPCN提出一种新的deconvolution方式,如图2(2)。ESPCN扩展了输出特性的通道,用于存储额外的点以提高分辨率,然后重新排列这些点以通过特定的映射标准获得HR输出。由于扩展是在通道维度上进行的,一个较小的内核大小就足够了,且进一步表明,在ESPCN中,将普通但冗余的最近邻插值替换为用零填充子像素的插值后,反卷积层可以简化为亚像素卷积。显然,与最近邻插值相比,这种插值更有效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值