文章目录
博主最近看了一篇2019年最新的非常详细的超分辨率领域DL方法的综述,大大地赞!写得非常好,文章工作整理地非常完善!所以想整理成文章发表,留作以后看,哈哈哈哈哈~~
Abstract
摘要部分:作者先讲述了超分辨率(SR)问题的定义和状况,图像超分辨率(SR)是图像处理的一个典型问题,用于增强图像或者视频的分辨率,属于CV领域。目前深度学习在CV领域有很高的建树,该文章就从头梳理DL的超分辨率算法,研究者将图像超分辨分成三种类型:监督SR,无监督SR,特定应用领域的SR。下面就问题定义,方法简述,模型组件,分类,数据集等方面展开介绍。
Introduction
问题定义: 图像超分辨率指的是从低分辨率图像(LR)恢复成高分辨率图像(HR )的过程。这个技术的应用领域非常广泛,如医学图像,遥感图像,加密等。纵览所有的文献,典型的SR方法有包括几种:基于边缘,基于预测,统计模型,基于块还有稀疏表示等等。而基于深度学习的方法也有以下几种区别:不同类型的网络结构,不同类型的损失函数,不同类型的学习策略。
文章贡献:
- 给出一个基于深度学习的图像超分辨技术概要性的回顾,包括问题设定,基准数据集,评价指标,SR方法,特定领域的应用等。
- 提供一个系统性的纵览,总结SR方法中每个组件的优点和局限性; 讨论了未来机遇和挑战。
文章安排:
—图1:展示图像超分辨率的分类
—第二部分:给出问题的定义和回顾主流的数据集和评价指标
—第三部分:分析有监督的超分辨率主要部件
—第四部分:给出无监督超分辨率方法的简要介绍
—第五部分:介绍主流的SR特定应用领域
—第六部分:讨论未来的方向和开源问题
section 1:
不得不说,这图真的太赞了!清晰明了,这对于我这种刚接触一个新领域的小白来说,一篇好的综述能帮助好多,理清思路。在第一部分,我就根据表格的内容,简单地做个中文版。(有些专业术语不会翻译,就不翻了,免得写错,哈哈哈英语水平有待提高)
1. 监督学习的超分辨率
-
模型框架
1.提前上采样 2.最后上采样 3.渐近式上采样 4.迭代交替式上下采样
-
上采样方法
1.基于传统的插值方法 最近邻 双线性 双三次方 其他 2.基于学习的方法 反卷积 亚像素层 其他
-
网络设计
残差学习 递归学习 多路径学习 紧密连接 通道注意力机制 高级卷积 像素递归学习 金字塔池化 小波变换
-
学习策略
1.损失函数 正则化 其他 2.curriculum learning ( 不好用中文表述) 3.多监督学习
-
其他
上下文融合网络 数据增强 多任务学习 网络插值 self Ensemble
-
评价指标
1.数据集 2.指标 客观方法: PSNR,SSIM 主观方法: MOS 基于任务评估
2. 无监督SR (该领域不是我所涉及的,在这不详细介绍)
3. 特定领域应用 (粗略介绍)
Problem Definition
问题定义:其实上面也有大概描述了一下。准确来说,超分辨率的过程是将LR恢复成HR,通常,LR图像 I x I_x Ix是经过我们本来拥有的高清图 I y I_y Iy(叫ground truth)降质得到的,公式如下:
I x = D ( I y ; θ ) I_x=D(I_y; {\theta}) Ix=D(Iy;θ)
这里D是降质的过程,代表着一个下采样函数,参数 θ {\theta} θ代表采样因子等。而一般情况下只采用一个函数就可用对高清图进行降质了,有些情况也可以使用一个卷积层或模型来完成降质过程。
而超分辨率这个过程是,将降质后的低分辨率图像 I x I_x Ix还原成高分辨图像 I y ′ I_y' Iy′,这里用公式表述:
I y ′ = F ( I x ; α ) I_y'=F(I_x; {\alpha}) Iy′=F(Ix;α)
F代表着超分辨率模型, α {\alpha} α代表F的参数。这里重建后的图像和原来的高清图会有一些差别,因此在深度学习上,就用损失函数来衡量,以优化两者的差别达到重建效果相近。
θ ′ = a r g m i n θ L ( I y , I y ′ ) + λ Φ ( θ ) {\theta'} = arg min_{\theta}L(I_y, I_y') + {\lambda}{\Phi({\theta})} θ′=argminθL(Iy,Iy′)+λΦ(θ)
后面的 λ Φ ( θ ) {\lambda}{\Phi({\theta})} λΦ(θ)代表的是正则化项。
Datasets for SR
这里列举了超分辨率领域的一些常用公开的数据集,下面把链接贴上来。
(表格来源是Github上一位大佬的, 他的github地址贴上来:https://github.com/LoSealL/VideoSuperResolution)
Model | Published | Code* | VSR (TF)** | VSR (Torch) | Keywords | Pretrained |
---|---|---|---|---|---|---|
SRCNN | ECCV14 | -, Keras | Y | Y | Kaiming | √ |
RAISR | arXiv | - | - | - | Google, Pixel 3 | |
ESPCN | CVPR16 | -, Keras | Y | Y | Real time | √ |
VDSR | CVPR16 | - | Y | Y | Deep, Residual | √ |
DRCN | CVPR16 | - | Y | Y | Recurrent | |
DRRN | CVPR17 | Caffe, PyTorch | Y | Y | Recurrent | |
LapSRN | CVPR17 | Matlab | Y | - | Huber loss | |
EDSR | CVPR17 | - | Y | Y | NTIRE17 Champion | √ |
SRGAN | CVPR17 | - | Y | - | 1st proposed GAN | |
VESPCN | CVPR17 | - | Y | Y | VideoSR | √ |
MemNet | ICCV17 | Caffe | Y | - | ||
SRDenseNet | ICCV17 | -, PyTorch | Y | - | Dense | √ |
SPMC | ICCV17 | Tensorflow | T | Y | VideoSR | |
DnCNN | TIP17 | Matlab | Y | Y | Denoise | √ |
DCSCN | arXiv | Tensorflow | Y | - | ||
IDN | CVPR18 | Caffe | Y | - | Fast | √ |
RDN | CVPR18 | Torch | Y | - | Deep, BI-BD-DN | |
SRMD | CVPR18 | Matlab | T | - | Denoise/Deblur/SR | |
DBPN | CVPR18 | PyTorch | Y | Y | NTIRE18 Champion | √ |
ZSSR | CVPR18 | Tensorflow | - | - | Zero-shot | |
FRVSR | CVPR18 | T | Y | VideoSR | √ | |
DUF | CVPR18 | Tensorflow | T | - | VideoSR | |
CARN | ECCV18 | PyTorch | Y | Y | Fast | √ |
RCAN | ECCV18 | PyTorch | Y | Y | Deep, BI-BD-DN | |
MSRN | ECCV18 | PyTorch | Y | Y | √ | |
SRFeat | ECCV18 | Tensorflow | Y | Y | GAN | |
NLRN | NIPS18 | Tensorflow | T | - | Non-local, Recurrent | |
SRCliqueNet | NIPS18 | - | - | - | Wavelet | |
FFDNet | TIP18 | Matlab | Y | Y | Conditional denoise | |
CBDNet | arXiv | Matlab | T | - | Blind-denoise | |
SOFVSR | ACCV18 | PyTorch | - | Y | VideoSR | √ |
ESRGAN | ECCVW18 | PyTorch | - | Y | 1st place PIRM 2018 | √ |
TecoGAN | arXiv | Tensorflow | - | T | VideoSR GAN | √ |
RBPN | CVPR19 | PyTorch | - | Y | VideoSR | √ |
*The 1st repo is by paper author.
**Y: included(包括); -: not included(不包括); T: under-testing(测试不足).
Image Quality Assessment
图像评估指标:有主观方法和客观方法,但是这两种方法的侧重点不一致,并不能很好地统一说明图像质量优劣。主观方法是人为的,带有主观性!而常用的客观方法有PSNR,MSE,SSIM。其中PSNR叫峰值信噪比,是计算ground truth(简称GT)和重建的HR之间像素级的差异;SSIM叫结构相似度,是计算GT和HR之间亮度通道的相似度。
PSNR的公式依赖于MSE(均方差)计算,给定GT为 I I I,重建的图像为 I ′ I' I′,公式如下:
M S E = 1 N ∑ i = 1 N ( I ( i ) − I ′ ( i ) ) 2 MSE=\dfrac{1}{N} \sum_{i=1}^N (I(i)-I'(i))^2 MSE=N1i=1∑N(I(i)−I′(i))2
P S N R = 10 ∗ l g ( L 2 M S E ) PSNR=10*lg (\dfrac{L^2}{MSE}) PSNR=10∗lg(MSEL2)
一般我们的使用的图像都是8位,L代表着0-255的最大值,即255。
SSIM公式就分开了三种,公式有点多,这里贴出我之前写的一篇文章作参考,https://blog.csdn.net/Resume_f/article/details/103339722,先把公式放上来,具体解释就不展开了。
l ( x , y ) = 2 u x u y + c 1 u x 2 + u y 2 + c 1 l(x, y)= \dfrac{2u_xu_y+c_1}{u^2_x+u^2_y+c_1} l