【论文阅读】Deep Learning for Image Super-resolution: A Survey(DL超分辨率最新综述)

本文是一篇对深度学习在图像超分辨率领域的最新综述,涵盖了问题定义、数据集、评估指标、网络设计和学习策略等方面。文章详细探讨了不同类型的损失函数、网络结构和优化方法,旨在提供对超分辨率技术全面的理解。通过分析各种方法的优缺点,文章为未来研究指明了方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

博主最近看了一篇2019年最新的非常详细的超分辨率领域DL方法的综述,大大地赞!写得非常好,文章工作整理地非常完善!所以想整理成文章发表,留作以后看,哈哈哈哈哈~~

Abstract

摘要部分:作者先讲述了超分辨率(SR)问题的定义和状况,图像超分辨率(SR)是图像处理的一个典型问题,用于增强图像或者视频的分辨率,属于CV领域。目前深度学习在CV领域有很高的建树,该文章就从头梳理DL的超分辨率算法,研究者将图像超分辨分成三种类型:监督SR,无监督SR,特定应用领域的SR。下面就问题定义,方法简述,模型组件,分类,数据集等方面展开介绍。

Introduction

问题定义: 图像超分辨率指的是从低分辨率图像(LR)恢复成高分辨率图像(HR )的过程。这个技术的应用领域非常广泛,如医学图像,遥感图像,加密等。纵览所有的文献,典型的SR方法有包括几种:基于边缘,基于预测,统计模型,基于块还有稀疏表示等等。而基于深度学习的方法也有以下几种区别:不同类型的网络结构,不同类型的损失函数,不同类型的学习策略。
文章贡献:

  • ‌给出一个基于深度学习的图像超分辨技术概要性的回顾,包括问题设定,基准数据集,评价指标,SR方法,特定领域的应用等。
  • 提供一个系统性的纵览,总结SR方法中每个组件的优点和局限性; ‌讨论了未来机遇和挑战。

文章安排:

—图1:展示图像超分辨率的分类
—第二部分:给出问题的定义和回顾主流的数据集和评价指标
—第三部分:分析有监督的超分辨率主要部件
—第四部分:给出无监督超分辨率方法的简要介绍
—第五部分:介绍主流的SR特定应用领域
—第六部分:讨论未来的方向和开源问题

section 1:

结构框架概述
不得不说,这图真的太赞了!清晰明了,这对于我这种刚接触一个新领域的小白来说,一篇好的综述能帮助好多,理清思路。在第一部分,我就根据表格的内容,简单地做个中文版。(有些专业术语不会翻译,就不翻了,免得写错,哈哈哈英语水平有待提高)

1. 监督学习的超分辨率

  • 模型框架

     	1.提前上采样
     	2.最后上采样
     	3.渐近式上采样
     	4.迭代交替式上下采样
    
  • ‌上采样方法

      1.基于传统的插值方法
      	最近邻
      	双线性
      	双三次方
      	其他
      2.基于学习的方法
      	反卷积
      	亚像素层
      	其他
    
  • 网络设计

     	残差学习
     	递归学习
     	多路径学习
     	紧密连接
     	通道注意力机制
     	高级卷积
     	像素递归学习
     	金字塔池化
     	小波变换
    
  • 学习策略

     	1.损失函数
     		正则化
     		‌其他
     	2.curriculum learning ( 不好用中文表述)
     	3.多监督学习
    
  • 其他

     	上下文融合网络
     	数据增强
     	多任务学习
     	网络插值
     	self Ensemble
    
  • ‌评价指标

     	1.数据集
     	2.指标
     		客观方法: PSNR,SSIM
     		主观方法: MOS
     		基于任务评估
    

2. 无监督SR ‌ (该领域不是我所涉及的,在这不详细介绍)

3. 特定领域应用 (粗略介绍)

Problem Definition

问题定义:其实上面也有大概描述了一下。准确来说,超分辨率的过程是将LR恢复成HR,通常,LR图像 I x I_x Ix是经过我们本来拥有的高清图 I y I_y Iy(叫ground truth)降质得到的,公式如下:
I x = D ( I y ; θ ) I_x=D(I_y; {\theta}) Ix=D(Iy;θ
这里D是降质的过程,代表着一个下采样函数,参数 θ {\theta} θ代表采样因子等。而一般情况下只采用一个函数就可用对高清图进行降质了,有些情况也可以使用一个卷积层或模型来完成降质过程。
而超分辨率这个过程是,将降质后的低分辨率图像 I x I_x Ix还原成高分辨图像 I y ′ I_y' Iy,这里用公式表述:
I y ′ = F ( I x ; α ) I_y'=F(I_x; {\alpha}) Iy=F(Ix;α)

F代表着超分辨率模型, α {\alpha} α代表F的参数。这里重建后的图像和原来的高清图会有一些差别,因此在深度学习上,就用损失函数来衡量,以优化两者的差别达到重建效果相近。
θ ′ = a r g m i n θ L ( I y , I y ′ ) + λ Φ ( θ ) {\theta'} = arg min_{\theta}L(I_y, I_y') + {\lambda}{\Phi({\theta})} θ=argminθL(Iy,Iy)+λΦ(θ)
后面的 λ Φ ( θ ) {\lambda}{\Phi({\theta})} λΦ(θ)代表的是正则化项。

Datasets for SR

这里列举了超分辨率领域的一些常用公开的数据集,下面把链接贴上来。
(表格来源是Github上一位大佬的, 他的github地址贴上来:https://github.com/LoSealL/VideoSuperResolution

Model Published Code* VSR (TF)** VSR (Torch) Keywords Pretrained
SRCNN ECCV14 -, Keras Y Y Kaiming
RAISR arXiv - - - Google, Pixel 3
ESPCN CVPR16 -, Keras Y Y Real time
VDSR CVPR16 - Y Y Deep, Residual
DRCN CVPR16 - Y Y Recurrent
DRRN CVPR17 Caffe, PyTorch Y Y Recurrent
LapSRN CVPR17 Matlab Y - Huber loss
EDSR CVPR17 - Y Y NTIRE17 Champion
SRGAN CVPR17 - Y - 1st proposed GAN
VESPCN CVPR17 - Y Y VideoSR
MemNet ICCV17 Caffe Y -
SRDenseNet ICCV17 -, PyTorch Y - Dense
SPMC ICCV17 Tensorflow T Y VideoSR
DnCNN TIP17 Matlab Y Y Denoise
DCSCN arXiv Tensorflow Y -
IDN CVPR18 Caffe Y - Fast
RDN CVPR18 Torch Y - Deep, BI-BD-DN
SRMD CVPR18 Matlab T - Denoise/Deblur/SR
DBPN CVPR18 PyTorch Y Y NTIRE18 Champion
ZSSR CVPR18 Tensorflow - - Zero-shot
FRVSR CVPR18 PDF T Y VideoSR
DUF CVPR18 Tensorflow T - VideoSR
CARN ECCV18 PyTorch Y Y Fast
RCAN ECCV18 PyTorch Y Y Deep, BI-BD-DN
MSRN ECCV18 PyTorch Y Y
SRFeat ECCV18 Tensorflow Y Y GAN
NLRN NIPS18 Tensorflow T - Non-local, Recurrent
SRCliqueNet NIPS18 - - - Wavelet
FFDNet TIP18 Matlab Y Y Conditional denoise
CBDNet arXiv Matlab T - Blind-denoise
SOFVSR ACCV18 PyTorch - Y VideoSR
ESRGAN ECCVW18 PyTorch - Y 1st place PIRM 2018
TecoGAN arXiv Tensorflow - T VideoSR GAN
RBPN CVPR19 PyTorch - Y VideoSR

*The 1st repo is by paper author.

**Y: included(包括); -: not included(不包括); T: under-testing(测试不足).

Image Quality Assessment

图像评估指标:有主观方法和客观方法,但是这两种方法的侧重点不一致,并不能很好地统一说明图像质量优劣。主观方法是人为的,带有主观性!而常用的客观方法有PSNR,MSE,SSIM。其中PSNR叫峰值信噪比,是计算ground truth(简称GT)和重建的HR之间像素级的差异;SSIM叫结构相似度,是计算GT和HR之间亮度通道的相似度。
PSNR的公式依赖于MSE(均方差)计算,给定GT为 I I I,重建的图像为 I ′ I' I,公式如下:
M S E = 1 N ∑ i = 1 N ( I ( i ) − I ′ ( i ) ) 2 MSE=\dfrac{1}{N} \sum_{i=1}^N (I(i)-I'(i))^2 MSE=N1i=1N(I(i)I(i))2
P S N R = 10 ∗ l g ( L 2 M S E ) PSNR=10*lg (\dfrac{L^2}{MSE}) PSNR=10lg(MSEL2)
一般我们的使用的图像都是8位,L代表着0-255的最大值,即255。
SSIM公式就分开了三种,公式有点多,这里贴出我之前写的一篇文章作参考,https://blog.csdn.net/Resume_f/article/details/103339722,先把公式放上来,具体解释就不展开了。
l ( x , y ) = 2 u x u y + c 1 u x 2 + u y 2 + c 1 l(x, y)= \dfrac{2u_xu_y+c_1}{u^2_x+u^2_y+c_1} l

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值