声明:题目、程序来自《剑指offer》,注释、分析为自己写下备忘,侵删
递归(回溯)
题目:地上有一个m行n列的方格。一个机器人从坐标((0, 0)的格子开始移动,它每次可以向左、右、上、下移动一格,但不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格(35; 37)}因为3十5+3+7=18。但它不进入方格(35, 38),因为3+5+3+8=19}请问该机器人能够到达多少个格子?分析:可以一个格子一个格子计算,但每行或每列上的格子与其相邻的格子坐标有关系。不产生数位进位的情况下,右移一格子,数位之和加一。每列下移一个格子,数位之和加一。所以在数位之和为k的坐标之上和之左的坐标都可以到达。
再进一步,暂时想不出能快速解决的方法,那就还是用递归(回溯法)。
程序来自《剑指offer》
int movingCount(int threshold, int rows, int cols)
{
if(threshold < 0 || rows <= 0||cols<=0)//输入的总行列数是从一开始的。
return 0;
bool *visited = new bool[rows*cols];
memset(visited, 0, rows*cols);
itn count = movingCountCore(threshold, rows, cols, 0, 0, visited);
delete[] visited;
return count;
}
//递归调用自身,返回count值
int movingCountCore(int threshold, int rows, int cols, int row, int col, bool* visited)
{
int count = 0;
if(check(threshold, rows, cols, row, col, visited)){
visited[row*cols +col] = true;
count = 1 +movingCountCore(threshold, rows, cols, row, col-1, visited)+movingCountCore(threshold, rows, cols, row-1, col, visited) + movingCountCore(threshold, rows, cols, row, col+1, visited)+movingCountCore(threshold, rows, cols, row+1, col, visited);
}
return count;
}
//判断单独一个数字是否符合要求
bool check(int threshold, int rows, int cols, int row, int col, bool* visited)
{
if(row>=0&&row<rows&&col>=0 && col<cols
&&getDigitSum(row)+getDigitSum(col)<=threshold
&& !visited[row*cols+col])
return true;
return false;
}
//计算一个数的数位之和
int getDigitSum(int number)
{
int sum = 0;
while(number >0){
sum+=number%10;
number /= 10;
}
return sum;
}