OR Paper Weekly | 毫秒级在线混合整数规划,数据驱动下利用金融衍生品的商品采购无标题

OR Paper Weekly 探讨了在线混合整数优化的新方法,通过机器学习实现对混合整数规划问题的快速求解,能够在毫秒级别完成,适用于实时性和高速性要求的应用。文章介绍了如何将此类问题转化为多分类问题,从而加速求解过程,与传统MIO求解器相比,速度显著提升。
摘要由CSDN通过智能技术生成

作者:徐思坤,王源,破茧

OR Paper Weekly 栏目将会从运筹学顶级期刊上选择一部分有趣的文章,对这些文章的主要研究内容进行一个概述/点评。OR Paper Weekly 的特点是 不做大而全的照搬,也未必都只选择优质的文章,而是精选一部分有趣的文章。辅之以科普/点评/吐槽的方式,让大家随时了解最新的科研动态。欢迎大家一起来 欣赏优质文章,学习脑洞文章,鄙视灌水文章。本期 OR Paper Weekly 精选了六篇文章,涵盖整数规划,动态规划,强化学习和生产调度等多个热点话题。

精选论文 (一)

论文题目:Online Mixed-Integer Optimization in Milliseconds

期刊:Informs Journal on Computing

发表年份:2022

作者:Dimitris Bertsimas, Bartolomeo Stellato

原文链接:

https://pubsonline.informs.org/doi/abs/10.1287/ijoc.2022.1181?af=R

摘要:

我们提出了一种近似在线混合整数优化解的方法(MIO),该方法采用机器学习实现对混合整数规划问题的高速求解。通过利用在线优化的重复性,可以大大加快求解时间。在该方法中我们采用 voice of optimization 的框架将最优解编码为策略。通过如上的转化,可以将优化问题的核心部分转化为一个可以快速求解的多分类问题。在本文中我们致力于将该框架扩展到有实时性和高速性需求的带有参数的混合整数二次规划问题及其相关应用问题中。我们提出的一种快速的在线优化方法,采用前馈神经网络评估和线性系统解决方案。因此,这种在线优化方法不需要任何求解器或迭代算法。我们在总计算量方面展示了所提出方法的总的计算时间和执行时间。同时我们还估计出求解最优解所需的浮点数操作和问题规模所成的函数关系。与最先进的 MIO 例程相比,我们的在线运行时间是必然容易精确预测出的,并且可以低于单个矩阵分解所需的时间。我们在一些标准测试问题上(主要包括 燃料电池能源管理、稀疏投资组合优化、和带有避障的运动规划等问题。)与目前最先进的求解器 Gurobi 的方法进行了对比实验。

文章亮点/点评:初看文章题目觉得作者一定是在吹牛逼,再看一下本文的作者赶紧收回自己上一句说的话。从这里我们也可以学到怎么样给自己的文章起一个好题目,其实一个好的题目有时候不需要很长很复杂,只要你能抓住人们的眼球就好。本文实际上给我们提供了一个很好的思路就是可以把带有参数的整数规划问题建模成一个多分类问题,通过这样的一种方式就可以将机器学习和整数规划结合起来。实际上本文所述思路也不是第一次提到了,在本文作者参考文献中的 “voice of optimization” 一文中对这一思想有很多介绍。本文大部分内容实际上继承自 “voice of optimization” 这篇文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值