论文解读|算子分裂算法中的安德森加速法

本文探讨了I型安德森加速算法在非光滑不动点问题中的应用,提出了一种全局收敛的算法版本,特征包括保险迭代确保收敛性、Powell正则化保证Jacobian阵可逆、重启检查策略防止病态。实验证明,该算法能有效提升一阶算法速度,尤其在大型凸锥问题优化中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:陈宇文,赵田田,胡明杰,史铭伟

编者按

本文考虑用I型安德森加速算法 (type-I Anderson acceleration) 来求解一般的非光滑不动点问题。对于非扩张的不动点映射(non-expansive mapping),作者提出了一个全局收敛的安德森算法版本。与经典的版本相比,它具有以下三个特点:采用保险迭代 (safe-guarding) 以保证算法收敛性、使用Powell正则化 (Powell-type regularization) 生成可逆的Jacobian阵B_{k}、通过重启检查策略 (restart checking) 确保B_{k}不是病态的。数值实验表明,它对许多一阶算法实现了提速,并在大型凸锥问题的数值优化 (如SCS, splitting conic solver) 中取得了良好的加速效果.

 

1. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值