题目描述
给定一个整数数组,其中第 i 个元素代表了第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
示例:
输入: [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
题解:动态规划(状态机)
只要在今天想买入的时候判断一下前一天是不是刚卖出,即可
从不持股状态不能直接到持股状态,得经过一个冷冻期,才能到持股状态。
初始化:
dp[0] [0]=0;//本来就不持有,啥也没干
dp[0] [1]=-1*prices[0];//第0天只买入
dp[0] [2]=0;//可以理解成第0天买入又卖出,那么第0天就是“不持股且当天卖出了”这个状态了,其收益为0,所以初始化为0是合理的。
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
//临界条件
if(n<=1) return 0;
//定义状态
int[][] flags = new int[n][3];
//最开始如果持股,则肯定时亏损状态
flags[0][1]=-prices[0];
//三个状态都用了Math.max 表示各状态最大收益
for(int i=1;i<n;i++){
//不持股也不卖出,则可能是上次继承,也可能是上次处于冷冻期,对应的状态为flags[i-1][2]
flags[i][0]=Math.max(flags[i-1][0],flags[i-1][2]);
//持股不卖,可能继承上次的,也可能用上次不持股不处于冷冻期的时候进行买入,用的是flags[i-1][0] 而不是flags[i][0]
flags[i][1]=Math.max(flags[i-1][1],flags[i-1][0]-prices[i]);
//卖出后不持股,上次持股最大收益+当前价格收益,卖出结束之后处于冷冻期。
flags[i][2]=flags[i-1][1]+prices[i];
}
//最后肯定在不持股的状态中取最大值
return Math.max(flags[n-1][0],flags[n-1][2]);
}
}