Week12
Problem--Medium--714. Best Time To Buy and Sell Stock with Transaction Fee
Your are given an array of integers prices
, for which the i
-th element is the price of a given stock on day i
; and a non-negative integer fee
representing a transaction fee.
You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)
Return the maximum profit you can make.
Example 1:
Input: prices = [1, 3, 2, 8, 4, 9], fee = 2 Output: 8 Explanation: The maximum profit can be achieved by:
- Buying at prices[0] = 1
- Selling at prices[3] = 8
- Buying at prices[4] = 4
- Selling at prices[5] = 9The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.
Note:
-
0 < prices.length <= 50000
. -
0 < prices[i] < 50000
. -
0 <= fee < 50000
.题目解析:
这道题也是一道动态规划的题目,里面涉及了三种操作,即基于当前的股票的股票价格我们可以选择抛售,买入以及不采取操作。因此,单纯一种类型的状态是做不了这个题目的,后续的状态转移也是有条件的,如果要抛售,必须前面的状态为手上持有买入的股票,想要买入必须前面的状态是手上没有股票。因此,在这里我设置了两种类型的状态,一种是手上不持有股票dp_0,一种是手上持有股票dp_1,那么后续的状态要么是买入,抛售或者什么都不做。起始状态可以设置为dp_0 = 0,dp_1 = -prices[0],后续状态从序号1开始。状态转移方程为:dp_0 = max(dp_0. dp_1 + prices[i] - fee);dp_1 = max(dp_1, dp_0 - prices[i]);代码:
class Solution { public: int maxProfit(vector<int>& prices, int fee) { int dp_0 = 0, dp_1 = -prices[0]; for (int i = 1; i < prices.size(); i++) { int temp = dp_0; dp_0 = max(dp_0, dp_1 + prices[i] - fee); dp_1 = max(dp_1, temp - prices[i]); } return dp_0; } };