Algorithm-week12

Week12

Problem--Medium--714. Best Time To Buy and Sell Stock with Transaction Fee

Your are given an array of integers prices, for which the i-th element is the price of a given stock on day i; and a non-negative integer fee representing a transaction fee.

You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction. You may not buy more than 1 share of a stock at a time (ie. you must sell the stock share before you buy again.)

Return the maximum profit you can make.

Example 1:

Input: prices = [1, 3, 2, 8, 4, 9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
  • Buying at prices[0] = 1
  • Selling at prices[3] = 8
  • Buying at prices[4] = 4
  • Selling at prices[5] = 9The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

Note:

  • 0 < prices.length <= 50000.
  • 0 < prices[i] < 50000.
  • 0 <= fee < 50000.

    题目解析:

    这道题也是一道动态规划的题目,里面涉及了三种操作,即基于当前的股票的股票价格我们可以选择抛售,买入以及不采取操作。因此,单纯一种类型的状态是做不了这个题目的,后续的状态转移也是有条件的,如果要抛售,必须前面的状态为手上持有买入的股票,想要买入必须前面的状态是手上没有股票。因此,在这里我设置了两种类型的状态,一种是手上不持有股票dp_0,一种是手上持有股票dp_1,那么后续的状态要么是买入,抛售或者什么都不做。起始状态可以设置为dp_0 = 0,dp_1 = -prices[0],后续状态从序号1开始。
    状态转移方程为:
    dp_0 = max(dp_0. dp_1 + prices[i] - fee);
    dp_1 = max(dp_1, dp_0 - prices[i]);

    代码:

    class Solution {
    public:
        int maxProfit(vector<int>& prices, int fee) {
            int dp_0 = 0, dp_1 = -prices[0];
            for (int i = 1; i < prices.size(); i++) {
                int temp = dp_0;
                dp_0 = max(dp_0, dp_1 + prices[i] - fee);
                dp_1 = max(dp_1, temp - prices[i]);
            }
            return dp_0;
        }
    };


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值