Like What You Like: Knowledge Distill via Neuron Selectivity Transfer论文初读

本文提出了一种名为Neuron Selectivity Transfer (NST)的知识蒸馏新方法,通过匹配教师和学生网络的神经元选择样式分布来改善知识迁移。NST解决了传统知识蒸馏忽视神经元选择性特性的不足,尤其适用于视觉任务,如分类和检测。实验证明,NST与知识蒸馏结合能取得最优效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

摘要

引言

相关工作

  深度网络压缩与加速

  知识蒸馏

  领域自适应

准备知识

  一些符号

  MMD(Maximum Mean Discrepancy)

神经元选择性迁移

  出发点

  公式

  讨论

实验

  在分类数据集上

  在检测数据集上

讨论

  不同KT的分析

  MMD以外的方法

结论


摘要

将知识迁移看成一种分布匹配问题

通过用一种新的损失函数最小化teacher与student网络间的Maximum Mean Discrepancy (MMD) metric来解决这个分布问题

引言

  • 出发点

神经元具有知识选择性特性,比如神经元只对特定的区域或者样本感兴趣,所以作者提出了对齐teacher和student网络间的神经元选择样式分布

最终的损失函数为交叉熵损失和MMD的和

  • 本文的贡献

提出了一种新的知识迁移的观点(对其选择样式分布),并提出了新的名叫 Neuron Selectivity Transfer (NST)的蒸馏的方法

在很多数据集上测试,并证明了提出的方法有效

表明提出的方法与其他的知识蒸馏的方法结合

表明知识迁移的方法可以帮助学习更好的特征,并且在其他的视觉任务中(比如目标检测)也可以获益

相关工作

  深度网络压缩与加速

网络裁剪:

  小数量级的权重是不重要的,可以裁剪,需要特殊的实现

  将裁剪看作子集选择和稀疏优化问题

量化和低秩近似

这些方法都可以与作者提出的方法结合

  知识蒸馏

KD的优点:软标签一方面可以捕捉类内的变化,另一方面还可以类间的相似性;

KD的缺点:假如是二分类,那么可供蒸馏的信息就很少

Fitnets可以通过中间层的监督来解决KD的问题,但要求严格,当teacher和student能力相差太大,可能会差生不利的影响

AT可以通过注意力机制,只蒸馏与目标强相关的神经元去蒸馏,解决Fitnets的问题,后面会讲到这是作者提出的方法的特殊情况

Flow of Solution Procedure (FSP)计算了两个不同层的特征的Gram matrix,他们认为FSP矩阵可以反应老师教学生的过程

  领域自适应

解决的问题是当目标领域的没有标签的时候,如何利用已有的标签,通过对比并减少两个领域的分布差异来训练模型,核心问题是如何减少两个领域分布的差异

 在Reproducing Kernel Hilbert Space (RKHS)中, MaximumMeanDiscrepancy(MMD)被当作比较两个分布的一个指标

有的方法,通过重新分配样本的权重或者重新挑选样本来最小化两个分布的MMD

有的方法,通过在一个显式的低维潜在空间中测量MMD

还有的,用MMD去正则化原领域和新领域学到的特征

值得注意的是,风格迁移也是一种领域自适应问题ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值