翻译自网址:https://blog.floydhub.com/checkpointing-tutorial-for-tensorflow-keras-and-pytorch/
- 定义:在模型生成的过程中,用来记录关键点的文件,例如在游戏打boss前需要存游戏进度一样。
- checkpoint文件包含的内容:
1)模型的结构(architecture),在模型重建时起到关键作用
2)模型的权重(weight)
3)训练的参数(loss,optimizer,epochs等)
4)优化器的状态,允许在您停止的地方恢复训练
综上:checkpoint文件包含了当前实验的状态,可以让你在该点恢复训练 - keras,tensorflow,pytorch中生成checkpoint文件的过程:
具体查看该翻译网站后半部分