算法设计与分析 01背包问题 C++代码实现

背包问题详解

1. 问题描述

有一个容量为V的背包,还有n个物体。现在忽略物体实际几何形状,我们认为只要背包的剩余容量大于等于物体体积,那就可以装进背包里。每个物体都有两个属性,即体积w和价值v。
问:如何向背包装物体才能使背包中物体的总价值最大?

C++代码

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int main()
{
    int w[5] = {0, 2, 3, 4, 7};           // 商品的体积2、3、4、7
    int v[5] = {0, 1, 3, 5, 9};           // 商品的价值1、3、5、9
    int bagV = 10;                        // 背包大小
    int dp[5][11] = {{0}};                // 动态规划表
    vector<int> selectedItems;       // 用于记录选择的物品

    for (int i = 1; i <= 4; i++) {
        for (int j = 1; j <= bagV; j++) {
            if (j < w[i])
                dp[i][j] = dp[i - 1][j];
            else
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);
        }
    }

    // 输出动态规划表
    cout << "规划表" << endl;
    for (int i = 0; i < 5; i++) {
        for (int j = 0; j <= bagV; j++) {
            cout << dp[i][j] << ' ';
        }
        cout << endl;
    }

    // 输出背包中物品的最大总价值
    cout << "背包中物品的最大总价值为:" << dp[4][bagV] << endl;

    // 追踪解的过程
    int remainingCapacity = bagV;
    for (int i = 4; i >= 1; i--) {
        if (dp[i][remainingCapacity] != dp[i - 1][remainingCapacity]) {
            selectedItems.push_back(i);
            remainingCapacity -= w[i];
        }
    }

    // 输出追踪解的过程
    cout << "追踪解的过程:" << endl;
    for (int i = selectedItems.size() - 1; i >= 0; i--) {
        cout << "选择物品:" << selectedItems[i] << endl;
    }

    return 0;
}

运行结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gouzy_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值