计算智能数学基础例题

高级智能的数学基础

1.习题2.2.1

D ⊂ R n D\sub \bf R^n DRn是有限集,则方程组(2.2.5)等价与

y = s g n ( ( w , x ) ) = { + 1 , x ∈ A − 1 , x ∈ B (2.2.5) y=sgn((w,x))=\begin{cases} +1 ,\qquad x \in A\\ -1 ,\qquad x\in B\end{cases} \tag{2.2.5} y=sgn((w,x))={+1,xA1,xB(2.2.5)

( w , x ) = ∑ j = 1 n w j x j > 0 , ∀ x ∈ D . (2.2.6) (w,x)= \sum_{j=1}^n w_jx_j>0,\qquad \forall x\in D. \tag{2.2.6} (w,x)=j=1nwjxj>0,xD.(2.2.6)

​ 其中: A ∩ B = ∅ D = A ∪ ( − B ) ( − B ) = { − x ∣ x ∈ B } A \cap B=\varnothing \qquad D=A \cup(-B) \qquad (-B)=\{-x|x \in B \} AB=D=A(B)(B)={xxB} ,


证明:(1)必要性:对于 ∀ x ∈ D \forall x \in D xD,当 x ∈ A x\in A xA时, s g n ( ( w , x ) ) = + 1 ( w , x ) = ∑ j = 1 n w j x j > 0 sgn((w,x))=+1 \qquad (w,x)=\sum\limits_{j=1}^n w_jx_j>0 sgn((w,x))=+1(w,x)=j=1nwjxj>0

​ 当 x ∈ B x\in B xB时, s g n ( ( w , x ) ) = − 1 sgn((w,x))=-1 sgn((w,x))=1 , ( w , x ) < 0 (w,x)<0 (w,x)<0,则有 ( w , − x ) > 0 (w,-x)>0 (w,x)>0, 则 x ∈ ( − B ) x \in(-B) x(B)时, ( w , x ) > 0 (w,x)>0 (w,x)>0

​ 所以,方程组
y = sgn ⁡ ( ( w , x ) ) = { + 1 , x ∈ A − 1 , x ∈ B y=\operatorname{sgn}((w, x))=\left\{\begin{array}{ll} +1, & x \in A \\ -1, & x \in B \end{array}\right. y=sgn((w,x))={+1,1,xAxB
可以得到 ( w , x ) = ∑ j = 1 n w j x j > 0 , ∀ x ∈ D . (w,x)= \sum_{j=1}^n w_jx_j>0,\qquad \forall x\in D. (w,x)=j=1nwjxj>0,xD.

​ (2) 充分性:对于 ( w , x ) = ∑ j = 1 n w j x j > 0 , ∀ x ∈ D , 其中 D = A ∪ ( − B ) ,且 A ∩ B = ∅ (w,x)= \sum_{j=1}^nw_jx_j>0,\qquad \forall x\in D,其中D=A \cup(-B),且A \cap B=\varnothing (w,x)=j=1nwjxj>0,xD,其中D=A(B),且AB=

当 x ∈ A 时,( w , x ) = ∑ j = 1 n w j x j > 0 , s g n ( ( w , x ) ) = 1 当x \in A时,(w,x)=\sum_{j=1}^n w_jx_j>0,\qquad sgn((w,x))=1 xA时,(w,x)=j=1nwjxj>0,sgn((w,x))=1

当 x ∈ ( − B ) 时,( w , x ) = ∑ j = 1 n w j x j > 0 , ∀ x ∈ D 可得到 y = s g n ( ( w , x ) ) = { + 1 , x ∈ A − 1 , x ∈ B 当x\in(-B)时,(w,x)=\sum_ {j=1}^n w_jx_j>0 ,\quad \forall x\in D 可得到y=sgn((w,x))=\begin{cases} +1 ,\qquad x \in A\\ -1 ,\qquad x\in B\end{cases} x(B)时,(w,x)=j=1nwjxj>0xD可得到y=sgn((w,x))={+1,xA1,xB

所以,由 ( 1 ) ( 2 ) 得 y = s g n ( ( w , x ) ) = = { + 1 , x ∈ A − 1 , x ∈ B , 等价与 ( w , x ) = ∑ j = 1 n w j x j > 0 , ∀ x ∈ D 所以,由(1)(2)得y=sgn((w,x))==\begin{cases} +1 ,\qquad x \in A\\ -1 ,\qquad x\in B\end{cases},\quad 等价与(w,x)=\sum\limits_{j=1}^nw_jx_j>0,\quad \forall x \in D 所以,由(1)(2)y=sgn((w,x))=={+1,xA1,xB等价与(w,x)=j=1nwjxj>0,xD

2. 习题3.5

设二层前向网中激励函数为双曲正切函数,讨论其学习算法。

解:设二层前向网中激励函数为
φ ( u ) = φ ′ ( u ) = 2 1 + e − 2 u − 1 \varphi(u)= \varphi {}' (u) = \frac{2}{1+e^{-2u}} -1 φ(u)=φ(u)=1+e2u21
并取 E = 1 2 ∑ α = 1 N ∑ h = 1 c ( y h α − t h α ) 2 E = \frac{1}{2} \sum \limits ^{N} _{\alpha =1} \sum \limits ^{c} _{h=1} (y^{\alpha}_h -t^{\alpha}_h) ^2 E=21α=1Nh=1c(yhαthα)2 ,其中记 E α = 1 2 ∑ h = 1 c ( y h α − t h α ) 2 E^{\alpha} = \frac{1}{2} \sum \limits ^{c} _{h=1} (y^{\alpha}_h -t^{\alpha}_h) ^2 Eα=21h=1c(yhαthα)2

其中 φ ′ ( u ) = 1 − φ 2 ( u ) \varphi^{'}(u) = 1-\varphi^{2}(u) φ(u)=1φ2(u)

于是
δ k α ( 2 ) = [ 1 − φ ( a ~ k α ) 2 ] ( y k α − t k α ) δ j α ( 1 ) = [ 1 − φ ( a ~ j α ) 2 ] ∑ k = 1 c w k j ( 2 ) δ k α ( 2 ) \delta ^{(2)} _{k\alpha } =[1-\varphi(\tilde{a}^{\alpha}_k )^2 ](y^{\alpha }_k-t^{\alpha }_k) \\ \delta ^{(1)} _{j\alpha } =[1-\varphi(\tilde{a}^{\alpha}_j )^2 ]\sum ^{c} _{k=1} w^{(2)}_{kj} \delta ^{(2)}_{k\alpha } δkα(2)=[1φ(a~kα)2](ykαtkα)δjα(1)=[1φ(a~jα)2]k=1cwkj(2)δkα(2)
其中 a j α = ∑ i = 0 d w j i 1 x i α a^{\alpha } _j = \sum \limits ^d _{i=0}w^{1}_{ji}x^{\alpha }_{i} ajα=i=0dwji1xiα z j α = φ ( a j α ) z^{\alpha }_{j} = \varphi (a^{\alpha }_{j}) zjα=φ(ajα) , a ~ k α = ∑ j = 0 M w k j 2 z j α \tilde{a} ^{\alpha }_k = \sum \limits ^M _{j=0}w^{2}_{kj}z^{\alpha }_{j} a~kα=j=0Mwkj2zjα , y k α = φ ( a ~ k α ) y^{\alpha } _k = \varphi(\tilde{a} ^{\alpha }_k) ykα=φ(a~kα)

迭代过程,计算第 t + 1 t+1 t+1 次权重
w k j ( 2 ) ( t + 1 ) = w k j ( 2 ) ( t ) − η ∑ α = 1 N δ k α ( 2 ) ( t ) ⋅ z j α w j i ( 1 ) ( t + 1 ) = w j i ( 1 ) ( t ) − η ∑ α = 1 N δ j α ( 1 ) ( t ) ⋅ x i α w^{(2)}_{kj}(t+1) = w^{(2)}_{kj}(t)-\eta \sum ^{N} _{\alpha =1} \delta ^{(2)}_{k\alpha }(t)\cdot z^{\alpha }_j \\ w^{(1)}_{ji}(t+1) = w^{(1)}_{ji}(t)-\eta \sum ^{N} _{\alpha =1} \delta ^{(1)}_{j\alpha }(t)\cdot x^{\alpha }_i wkj(2)(t+1)=wkj(2)(t)ηα=1Nδkα(2)(t)zjαwji(1)(t+1)=wji(1)(t)ηα=1Nδjα(1)(t)xiα
由上述过程可得序列 { δ j α ( 1 ) ( t ) , δ k α ( 2 ) ( t ) , w j i ( 1 ) ( t ) , w k j ( 2 ) ( t ) } \left \{ \delta ^{(1)}_{j\alpha } (t), \delta ^{(2)}_{k\alpha } (t), w^{(1)}_{ji } (t),w^{(2)}_{kj } (t) \right \} {δjα(1)(t),δkα(2)(t),wji(1)(t),wkj(2)(t)} , 直至满足停机准则。

解:tanh是双曲函数中的一个,tanh() 为双曲正切。在数学中,双曲正切 tanh 是由双曲正弦和双曲余弦这两者基本双曲函数推导而来。

正切函数时非常常见的激活函数,与Sigmoid函数相比,它的输出均值是0,使得其收敛速度要比Sigmoid快,减少迭代次数。相对于

Sigmoid的好处是它的输出的均值为0,克服了第二点缺点。但是当饱和的时候还是会杀死梯度。

3. Bp算法

给定样本为 x = [1, -1, 1] , y =[1, 1],选 η = 0.1 \eta =0.1 η=0.1,计算下图所示网络的权值调节过程(用BP算法)。 隐单元及输出单元用 φ ( x ) = 2 1 + e − x − 1 \varphi(x)=\frac 2 {1+e^{-x}}-1 φ(x)=1+ex21 作为激活函数,初始权值选为

w 1 = [ 1 1 1 2 0 2 3 3 − 3 ] w 2 = [ 1 − 1 1 0 1 1 ] w_1= \begin{bmatrix} 1&1&1\\ 2&0&2\\ 3&3&-3 \end{bmatrix} \qquad \qquad \qquad w_2= \begin{bmatrix} 1&-1&1\\ 0&1&1 \end{bmatrix} w1= 123103123 w2=[101111]

在这里插入图片描述

解:(1)设神经元输出用O表示,其编号如图所示,则隐含层和输出层输出为 O j = f ( n e t j ) = 2 1 + e − n e t i − 1 O_j=f(net_j)=\frac 2 {1+e^{-net_i}}-1 Oj=f(netj)=1+eneti21 , 激活函数求导为 f ′ ( x ) = 1 2 [ 1 − f 2 ( x ) ] = 1 2 ( 1 − O j 2 ) f^{\prime}(x)=\frac 1 2\left[1-f^2(x)\right]=\frac 1 2(1-O_j^2) f(x)=21[1f2(x)]=21(1Oj2)

(2)前向传播

​ 隐含层: n e t 4 = x 1 w 11 + x 2 w 12 + x 3 w 13 = 1 ∗ 1 + 1 ∗ ( − 1 ) + 1 ∗ 1 = 1 net_4=x_1w_{11}+x_2w_{12}+x_3w_{13}=1*1+1*(-1)+1*1=1 net4=x1w11+x2w12+x3w13=11+1(1)+11=1

n e t 5 = x 1 w 21 + x 2 w 22 + x 3 w 23 = 2 ∗ 1 + 0 ∗ ( − 1 ) + 2 ∗ 1 = 4 net_5=x_1w_{21}+x_2w_{22}+x_3w_{23}=2*1+0*(-1)+2*1=4 net5=x1w21+x2w22+x3w23=21+0(1)+21=4

n e t 6 = x 1 w 31 + x 2 w 32 + x 3 w 33 = 3 ∗ 1 + 3 ∗ ( − 1 ) + ( − 3 ) ∗ 1 = − 3 net_6=x_1w_{31}+x_2w_{32}+x_3w_{33}=3*1+3*(-1)+(-3)*1=-3 net6=x1w31+x2w32+x3w33=31+3(1)+(3)1=3

O 4 = f ( n e t 4 ) = 0.4621 O_4=f(net_4)=0.4621 O4=f(net4)=0.4621

O 5 = f ( n e t 5 ) = 0.964 O_5=f(net_5)=0.964 O5=f(net5)=0.964

O 6 = f ( n e t 6 ) = − 0.9051 O_6=f(net_6)=-0.9051 O6=f(net6)=0.9051

​ 输出层: n e t y 1 = O 4 w 11 + O 5 w 12 + O 6 w 13 = 0.4621 ∗ 1 + 0.964 ∗ ( − 1 ) + ( − 0.9051 ) ∗ 1 = − 1.407 nety_1=O_4w_{11}+O_5w_{12}+O_6w_{13}=0.4621*1+0.964*(-1)+(-0.9051)*1=-1.407 nety1=O4w11+O5w12+O6w13=0.46211+0.964(1)+(0.9051)1=1.407

n e t y 2 = O 4 w 21 + O 5 w 22 + O 6 w 23 = 0.4621 ∗ 0 + 0.964 ∗ 1 + ( − 0.9051 ) ∗ 1 = 0.0589 nety_2=O_4w_{21}+O_5w_{22}+O_6w_{23}=0.4621*0+0.964*1+(-0.9051)*1=0.0589 nety2=O4w21+O5w22+O6w23=0.46210+0.9641+(0.9051)1=0.0589

O y 1 = f ( n e t y 1 ) = − 0.6065 O_{y_1}=f(net_{y_1})=-0.6065 Oy1=f(nety1)=0.6065

O y 2 = f ( n e t y 2 ) = 0.0294 O_{y_2}=f(net_{y_2})=0.0294 Oy2=f(nety2)=0.0294

​ (3)构造损失函数

E = 1 2 ∑ k = 1 N ( y k − y k ^ ) 2 E=\frac 1 2 \sum_ {k=1}^N(y_k-\hat{y_k})^2 E=21k=1N(ykyk^)2, 其中 E k = ( y k − y k ^ ) 2 E_k=(y_k-\hat{y_k})^2 Ek=(ykyk^)2

​ (4)用反向传播求解偏导数

E t o t a l = E y 1 + E y 2 = 1 2 ( 1 − ( − 0.6065 ) 2 ) + 1 2 ( 1 − ( 0.0294 ) 2 ) = 1.76145 E_{total} = E_{y_1} + E_{y_2} = \frac 1 2 (1-(-0.6065)^2)+ \frac 1 2 (1-(0.0294)^2) = 1.76145 Etotal=Ey1+Ey2=21(1(0.6065)2)+21(1(0.0294)2)=1.76145

​ 根据公式
∂ E ∂ w = ∂ E ∂ o y ⋅ ∂ o y ∂ n e t y ⋅ ∂ n e t y ∂ w \frac{\partial E}{\partial w} =\frac{\partial E}{\partial o_y} \cdot \frac{\partial o_y}{\partial net_y} \cdot \frac{\partial net_y}{\partial w} wE=oyEnetyoywnety
​ 权值更新公式:
w + = w − η ∂ E ∂ w w^+ = w - \eta \frac{\partial E}{\partial w} w+=wηwE
​ 带入数据得到:

w 1 = [ 1.03 0.97 1.030 1.99 0.01 1.99 3.041 2.956 − 2.958 ] w 2 = [ 1.035 0.93 0.94 0.212 1.037 0.964 ] w_1=\begin{bmatrix} 1.03& 0.97 & 1.030\\ 1.99& 0.01 & 1.99\\ 3.041& 2.956 & -2.958 \end{bmatrix} \quad \quad\quad\quad w_2 = \begin{bmatrix} 1.035 & 0.93 & 0.94\\ 0.212 & 1.037 & 0.964 \end{bmatrix} w1= 1.031.993.0410.970.012.9561.0301.992.958 w2=[1.0350.2120.931.0370.940.964]

4.命题3.5.2

设圈 C 1 , C 2 , . . . , C k 是图 G 中的全体图,那么 D ( C 1 ) , D ( C 2 ) , . . . , D ( C k ) 两两不交,且并集为 A , 称之为空间 A 的一个划分 设圈C_1,C_2,...,C_k是图G中的全体图,那么D(C_1),D(C_2),...,D(C_k)两两不交,且并集为A,\\称之为空间A的一个划分 设圈C1,C2,...,Ck是图G中的全体图,那么D(C1),D(C2),...,D(Ck)两两不交,且并集为A称之为空间A的一个划分

​ **证明:图G默认为是由HNNS生成的图,则图G中每一个点有且只有一条出弧,图G中不同的圈无公共点,且图G中每个点通过若干个点必可达到一个圈。题意中D©为全体可到圈C的点,因为图G中不同的圈无公共点,且图G中每个点通过若干个点必可到一个圈,故命题得证。

5.数值实验

在平面 R 2 上取矩形 I = [ − 5 , 5 ] × ⌊ − 5 , 5 ⌋ , 并在 I 中随机产生 100 个样本点,作为训练样本点,得到训练样本 集 Ω = { ( x i , y i ) ∣ i = 1 , 2 , . . . , 100 } ⊂ I × { − 1 , + 1 } , 其中,如果 x i 落在圆 t 1 2 + t 2 2 = 16 ( ( t 1 , t 2 ) ) ∈ R 2 内, 则取 y i = − 1 , 否则取 y i = + 1 \hspace{0cm} 在平面R^2 上取矩形I=[-5,5] \times \lfloor -5,5 \rfloor ,并在I中随机产生100个样本点,作为训练样本点,得到训练样本\\集 \Omega =\{(x_i,y_i)|i=1,2,...,100 \} \subset I \times \{-1,+1 \} ,其中,如果x_i落在圆t^2_1+t^2_2=16 ((t_1,t_2)) \in \bf R^2 内,\\则取y_i=-1,否则取y_i=+1 在平面R2上取矩形I=[5,5]×5,5,并在I中随机产生100个样本点,作为训练样本点,得到训练样本Ω={(xi,yi)i=1,2,...,100}I×{1,+1},其中,如果xi落在圆t12+t22=16((t1,t2))R2内,则取yi=1,否则取yi=+1

​ 采用Gauss支撑向量机进行学习。Gauss核函数的参数选取及其分类效果,见表4.4.1.学习后的得到的分类曲线见图4.4.1

6.习题 8

8.1 设 X = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } , X=\{1,2,3,4,5,6,7\}, X={1,2,3,4,5,6,7}, A ∈ F ( X ) , A \in F(X), AF(X), 其隶属度 A ~ ( x ) \tilde{A}(x) A~(x) 如下:
A ~ ( 1 ) = 0.1 A ~ ( 2 ) = 0.3 A ~ ( 3 ) = 0.8 A ~ ( 4 ) = 1 A ~ ( 5 ) = 0.8 A ~ ( 6 ) = 0.3 A ~ ( 7 ) = 0 \tilde{A}(1)=0.1 \quad \tilde{A}(2)=0.3 \quad \tilde{A}(3)=0.8 \quad \tilde{A}(4)=1 \\ \tilde{A}(5)=0.8 \quad \tilde{A}(6)=0.3 \quad \tilde{A}(7)=0 A~(1)=0.1A~(2)=0.3A~(3)=0.8A~(4)=1A~(5)=0.8A~(6)=0.3A~(7)=0

  1. 分别用查德法,向量法、序偶法表示 A ~ \tilde{A} A~ ;
  2. A c ~ \tilde{A^c} Ac~ ;
  3. 指出 A ~ \tilde{A} A~ 的意义.

【解】: (1)查德法: A ~ = 0.1 1 + 0.3 2 + 0.8 3 + 1 4 + 0.8 5 + 0.3 6 + 0 7 \tilde{A} = \frac {0.1} {1} +\frac {0.3} {2} +\frac {0.8} {3} +\frac {1} {4} +\frac {0.8} {5} +\frac {0.3} {6} +\frac {0} {7} A~=10.1+20.3+30.8+41+50.8+60.3+70

​ 向量法: A ~ = ( 0.1 , 0.3 , 0.8 , 1 , 0.8 , 0.3 , 0 ) \tilde{A}=(0.1,0.3,0.8,1,0.8,0.3,0) A~=(0.1,0.3,0.8,1,0.8,0.3,0)

​ 序偶法: A ~ = { ( 1 , 0.1 ) , ( 2 , 0.3 ) , ( 3 , 0.8 ) , ( 4 , 1 ) , ( 5 , 0.8 ) , ( 6 , 0.3 ) , ( 7 , 0 ) } \tilde{A}=\{(1,0.1),(2,0.3),(3,0.8),(4,1),(5,0.8),(6,0.3),(7,0)\} A~={(1,0.1),(2,0.3),(3,0.8),(4,1),(5,0.8),(6,0.3),(7,0)}

​ (2)
A c ~ = 1 − 0.1 1 + 1 − 0.3 2 + 1 − 0.8 3 + 1 − 1 4 + 1 − 0.8 5 + 1 − 0.3 6 + 1 − 0 7 = 0.9 1 + 0.7 2 + 0.2 3 + 0 4 + 0.2 5 + 0.7 6 + 1 7 \begin{align} \tilde{A^c}&=\frac {1-0.1} 1 +\frac {1-0.3} 2 +\frac {1-0.8} 3 +\frac {1-1} 4 +\frac {1-0.8} 5 +\frac {1-0.3} 6 +\frac {1-0} 7 \\ &= \frac {0.9} 1 + \frac {0.7} 2 +\frac {0.2} 3 +\frac {0 } 4 +\frac {0.2} 5 +\frac {0.7} 6 +\frac {1} 7 \end{align} Ac~=110.1+210.3+310.8+411+510.8+610.3+710=10.9+20.7+30.2+40+50.2+60.7+71
​ (3) A ~ \tilde{A} A~ 表示在集合 X X X 中的元素,在 A ~ ( x ) \tilde{A}(x) A~(x) 的映射下有一个实数值 A ~ ( x ) ∈ [ 0 , 1 ] \tilde{A}(x)\in [0,1] A~(x)[0,1] 与之对应,则 A ~ \tilde{A} A~ 表示元素 x x x 属于集合 A A A 的程度。

8.2已知模糊集“老年” 和 “年轻” 的隶属函数分别为:
O ~ ( x ) = { 0 ,  当  0 ⩽ x ⩽ 50  时,  [ 1 + ( x − 50 5 ) − 2 ] − 1 ,  当  50 < x ⩽ 200  时,  Y ~ ( x ) = { 1 ,  当  0 ⩽ x ⩽ 25  时,  [ 1 + ( x − 25 5 ) 2 ] − 1 ,  当  25 < x ⩽ 200  时.  \begin{array}{l} \widetilde{O}(x)=\left\{\begin{array}{ll} 0, & \text { 当 } 0 \leqslant x \leqslant 50 \text { 时, } \\ {\left[1+\left(\frac{x-50}{5}\right)^{-2}\right]^{-1},} & \text { 当 } 50<x \leqslant 200 \text { 时, } \end{array}\right. \\ \tilde{Y}(x)=\left\{\begin{array}{ll} 1, & \text { 当 } 0 \leqslant x \leqslant 25 \text { 时, } \\ {\left[1+\left(\frac{x-25}{5}\right)^{2}\right]^{-1},} & \text { 当 } 25<x \leqslant 200 \text { 时. } \end{array}\right. \\ \end{array} O (x)={0,[1+(5x50)2]1,  0x50   50<x200 Y~(x)={1,[1+(5x25)2]1,  0x25   25<x200 
​ 试写出模糊集“不老” 和 “既不老又不年轻” 的隶属函数.

【解】:“不老”的隶属函数:
[ O ~ ( x ) ] c = { 1 ,  当  0 ⩽ x ⩽ 50  时,  [ 1 + ( x − 50 5 ) 2 ] − 1  当  50 < x ⩽ 200  时,  [\widetilde{O}(x)]^c=\left\{ \begin{array}{ll}1, & \text { 当 } 0 \leqslant x \leqslant 50 \text { 时, } \\ {\left[1+\left(\frac{x-50}{5}\right)^{2}\right]^{-1}} & \text { 当 } 50<x \leqslant 200 \text { 时, } \end{array}\right. [O (x)]c={1,[1+(5x50)2]1  0x50   50<x200 

​ “不年轻”的隶属函数:
[ Y ~ ( x ) ] c = { 0 ,  当  0 ⩽ x ⩽ 25  时,  [ 1 + ( x − 25 5 ) − 2 ] − 1  当  25 < x ⩽ 200  时,  [\widetilde{Y}(x)]^c=\left\{ \begin{array}{ll}0, & \text { 当 } 0 \leqslant x \leqslant 25 \text { 时, } \\ {\left[1+\left(\frac{x-25}{5}\right)^{-2}\right]^{-1}} & \text { 当 } 25<x \leqslant 200 \text { 时, } \end{array}\right. [Y (x)]c={0,[1+(5x25)2]1  0x25   25<x200 

​ “既不老又不年轻”的隶属函数:
[ O ~ ( x ) ] c ∩ [ Y ~ ( x ) ] c = { 0 ,  当  0 ⩽ x ⩽ 25  时,  [ 1 + ( x − 25 5 ) − 2 ] − 1  当  25 < x ⩽ 51  时,  [ 1 + ( x − 50 5 ) 2 ] − 1  当  51 < x ⩽ 200  时,  [\widetilde{O}(x)]^c \cap [\widetilde{Y}(x)]^c=\left\{ \begin{array}{ll}0, & \text { 当 } 0 \leqslant x \leqslant 25 \text { 时, } \\ {\left[1+\left(\frac{x-25}{5}\right)^{-2}\right]^{-1}} & \text { 当 } 25<x \leqslant 51\text { 时, }\\ {\left[1+\left(\frac{x-50}{5}\right)^{2}\right]^{-1}} & \text { 当 } 51<x \leqslant 200 \text { 时, } \end{array}\right. [O (x)]c[Y (x)]c= 0,[1+(5x25)2]1[1+(5x50)2]1  0x25   25<x51   51<x200 

8.3 设 A ~ , B ~ , C ~ ∈ F ( x ) \tilde{A}, \tilde{B},\tilde{C} \in F(x) A~,B~,C~F(x),如下表:

x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3 x 4 x_4 x4 x 5 x_5 x5 x 6 x_6 x6
A ~ \tilde{A} A~0.10.60.80.90.70.1
B ~ \tilde{B} B~0.90.70.50.20.10
C ~ \tilde{C} C~0.60.810.70.50.3

求: A ~ ∪ B ~ , A ~ ∩ B ~ , ( A ~ ∪ B ~ ) c , ( A ~ ∩ B ~ ) c , ( A ~ ∪ B ~ ) c ∩ C ~ , ( A ~ ∪ B ~ ) c ∪ C ~ , ( A ~ ∩ B ~ c ) c ∪ C ~ , \widetilde{A} \cup \widetilde{B} , \widetilde{A} \cap \widetilde{B}, (\widetilde{A} \cup \widetilde{B})^c, (\widetilde{A} \cap \widetilde{B})^c, (\widetilde{A} \cup \widetilde{B})^c \cap \widetilde{C}, (\widetilde{A} \cup \widetilde{B})^c \cup \widetilde{C}, (\widetilde{A} \cap \widetilde{B}^c)^c \cup \widetilde{C}, A B ,A B ,(A B )c,(A B )c,(A B )cC ,(A B )cC ,(A B c)cC ,

【解】:

  1. A ~ ∪ B ~ = ∑ i = 1 6 A ~ ( x i ) x i ∪ ∑ i = 1 6 B ~ ( x i ) x i = 0.9 x 1 + 0.7 x 2 + 0.8 x 3 + 0.9 x 4 + 0.7 x 5 + 0.1 x 6 \widetilde{A} \cup \widetilde{B}= \sum _{i=1} ^6 \frac {\widetilde{A}(x_i)} {x_i} \cup \sum _{i=1} ^6 \frac {\widetilde{B}(x_i)} {x_i} = \frac {0.9} {x_1} +\frac {0.7} {x_2} +\frac {0.8} {x_3} +\frac {0.9} {x_4} +\frac {0.7} {x_5} +\frac {0.1} {x_6} A B =i=16xiA (xi)i=16xiB (xi)=x10.9+x20.7+x30.8+x40.9+x50.7+x60.1

  2. A ~ ∩ B ~ = ∑ i = 1 6 A ~ ( x i ) x i ∩ ∑ i = 1 6 B ~ ( x i ) x i = 0.1 x 1 + 0.6 x 2 + 0.5 x 3 + 0.2 x 4 + 0.1 x 5 + 0 x 6 \widetilde{A} \cap \widetilde{B} = \sum _{i=1} ^6 \frac {\widetilde{A}(x_i)} {x_i} \cap \sum _{i=1} ^6 \frac {\widetilde{B}(x_i)} {x_i}= \frac {0.1} {x_1} +\frac {0.6} {x_2} +\frac {0.5} {x_3} +\frac {0.2} {x_4} +\frac {0.1} {x_5} +\frac {0} {x_6} A B =i=16xiA (xi)i=16xiB (xi)=x10.1+x20.6+x30.5+x40.2+x50.1+x60

  3. ( A ~ ∪ B ~ ) c = A ~ c ∩ B ~ c = ( 0.9 x 1 + 0.4 x 2 + 0.2 x 3 + 0.1 x 4 + 0.3 x 5 + 0.9 x 6 ) ∩ ( 0.1 x 1 + 0.3 x 2 + 0.5 x 3 + 0.8 x 4 + 0.9 x 5 + 1 x 6 ) = 0.1 x 1 + 0.3 x 2 + 0.2 x 3 + 0.1 x 4 + 0.3 x 5 + 0.9 x 6 (\widetilde{A} \cup \widetilde{B})^c= \widetilde{A}^c \cap \widetilde{B}^c =(\frac {0.9} {x_1} +\frac {0.4} {x_2} +\frac {0.2} {x_3} +\frac {0.1} {x_4} +\frac {0.3} {x_5} +\frac {0.9} {x_6}) \cap (\frac {0.1} {x_1} +\frac {0.3} {x_2} +\frac {0.5} {x_3} +\frac {0.8} {x_4} +\frac {0.9} {x_5} +\frac {1} {x_6}) \\ =\frac {0.1} {x_1} +\frac {0.3} {x_2} +\frac {0.2} {x_3} +\frac {0.1} {x_4} +\frac {0.3} {x_5} +\frac {0.9} {x_6} (A B )c=A cB c=(x10.9+x20.4+x30.2+x40.1+x50.3+x60.9)(x10.1+x20.3+x30.5+x40.8+x50.9+x61)=x10.1+x20.3+x30.2+x40.1+x50.3+x60.9

  4. ( A ~ ∩ B ~ ) c = A ~ c ∪ B ~ c = ( 0.9 x 1 + 0.4 x 2 + 0.2 x 3 + 0.1 x 4 + 0.3 x 5 + 0.9 x 6 ) ∪ ( 0.1 x 1 + 0.3 x 2 + 0.5 x 3 + 0.8 x 4 + 0.9 x 5 + 1 x 6 ) = 0.9 x 1 + 0.4 x 2 + 0.5 x 3 + 0.8 x 4 + 0.9 x 5 + 1 x 6 (\widetilde{A} \cap \widetilde{B})^c =\widetilde{A}^c \cup \widetilde{B}^c =(\frac {0.9} {x_1} +\frac {0.4} {x_2} +\frac {0.2} {x_3} +\frac {0.1} {x_4} +\frac {0.3} {x_5} +\frac {0.9} {x_6}) \cup (\frac {0.1} {x_1} +\frac {0.3} {x_2} +\frac {0.5} {x_3} +\frac {0.8} {x_4} +\frac {0.9} {x_5} +\frac {1} {x_6}) \\ =\frac {0.9} {x_1} +\frac {0.4} {x_2} +\frac {0.5} {x_3} +\frac {0.8} {x_4} +\frac {0.9} {x_5} +\frac {1} {x_6} (A B )c=A cB c=(x10.9+x20.4+x30.2+x40.1+x50.3+x60.9)(x10.1+x20.3+x30.5+x40.8+x50.9+x61)=x10.9+x20.4+x30.5+x40.8+x50.9+x61

  5. ( A ~ ∪ B ~ ) c ∩ C ~ = ( 0.1 x 1 + 0.3 x 2 + 0.2 x 3 + 0.1 x 4 + 0.3 x 5 + 0.9 x 6 ) ∩ ( 0.6 x 1 + 0.8 x 2 + 1 x 3 + 0.7 x 4 + 0.5 x 5 + 0.3 x 6 ) = 0.1 x 1 + 0.3 x 2 + 0.2 x 3 + 0.1 x 4 + 0.3 x 5 + 0.3 x 6 (\widetilde{A} \cup \widetilde{B})^c \cap \widetilde{C} = (\frac {0.1} {x_1} +\frac {0.3} {x_2} +\frac {0.2} {x_3} +\frac {0.1} {x_4} +\frac {0.3} {x_5} +\frac {0.9} {x_6}) \cap (\frac {0.6} {x_1} +\frac {0.8} {x_2} +\frac {1} {x_3} +\frac {0.7} {x_4} +\frac {0.5} {x_5} +\frac {0.3} {x_6}) \\= \frac {0.1} {x_1} +\frac {0.3} {x_2} +\frac {0.2} {x_3} +\frac {0.1} {x_4} +\frac {0.3} {x_5} +\frac {0.3} {x_6} (A B )cC =(x10.1+x20.3+x30.2+x40.1+x50.3+x60.9)(x10.6+x20.8+x31+x40.7+x50.5+x60.3)=x10.1+x20.3+x30.2+x40.1+x50.3+x60.3

  6. ( A ~ ∪ B ~ ) c ∪ C ~ = ( 0.1 x 1 + 0.3 x 2 + 0.2 x 3 + 0.1 x 4 + 0.3 x 5 + 0.9 x 6 ) ∪ ( 0.6 x 1 + 0.8 x 2 + 1 x 3 + 0.7 x 4 + 0.5 x 5 + 0.3 x 6 ) = 0.6 x 1 + 0.8 x 2 + 1 x 3 + 0.7 x 4 + 0.5 x 5 + 0.9 x 6 (\widetilde{A} \cup \widetilde{B})^c \cup \widetilde{C} = (\frac {0.1} {x_1} +\frac {0.3} {x_2} +\frac {0.2} {x_3} +\frac {0.1} {x_4} +\frac {0.3} {x_5} +\frac {0.9} {x_6}) \cup (\frac {0.6} {x_1} +\frac {0.8} {x_2} +\frac {1} {x_3} +\frac {0.7} {x_4} +\frac {0.5} {x_5} +\frac {0.3} {x_6})\\ = \frac {0.6} {x_1} +\frac {0.8} {x_2} +\frac {1} {x_3} +\frac {0.7} {x_4} +\frac {0.5} {x_5} +\frac {0.9} {x_6} (A B )cC =(x10.1+x20.3+x30.2+x40.1+x50.3+x60.9)(x10.6+x20.8+x31+x40.7+x50.5+x60.3)=x10.6+x20.8+x31+x40.7+x50.5+x60.9

  7. ( A ~ ∩ B ~ c ) c ∪ C ~ = 0.9 x 1 + 0.8 x 2 + 1 x 3 + 0.7 x 4 + 0.5 x 5 + 0.9 x 6 (\widetilde{A} \cap \widetilde{B}^c)^c \cup \widetilde{C} = \frac {0.9} {x_1} +\frac {0.8} {x_2} +\frac {1} {x_3} +\frac {0.7} {x_4} +\frac {0.5} {x_5} +\frac {0.9} {x_6} (A B c)cC =x10.9+x20.8+x31+x40.7+x50.5+x60.9

8.4 已知 A ~ , B ~ ∈ F ( x ) \tilde{A}, \tilde{B} \in F(x) A~,B~F(x),

​ (1)试证 A ~ ∩ B ~ \widetilde{A} \cap \widetilde{B} A B 是包含 A ~ \widetilde{A} A B ~ \widetilde{B} B 的最大公共子集.

​ 证明: ( A ~ ∩ B ~ ) ( x ) = m i n { A ~ ( x ) , B ~ ( x ) } ≤ A ~ ( x ) (\widetilde{A} \cap \widetilde{B} )(x) = min\{\widetilde{A}(x) ,\widetilde{B}(x) \} \le \widetilde{A}(x) (A B )(x)=min{A (x),B (x)}A (x) , ( A ~ ∩ B ~ ) ( x ) = m i n { A ~ ( x ) , B ~ ( x ) } ≤ B ~ ( x ) (\widetilde{A} \cap \widetilde{B} )(x) = min\{\widetilde{A}(x) ,\widetilde{B}(x) \} \le \widetilde{B}(x) (A B )(x)=min{A (x),B (x)}B (x)

​ 则: A ~ ∩ B ~ ⊆ A ~ \widetilde{A} \cap \widetilde{B} \subseteq \widetilde{A} A B A , A ~ ∩ B ~ ⊆ B ~ \widetilde{A} \cap \widetilde{B} \subseteq \widetilde{B} A B B

​ 若 E E E 为任一属于 A ~ \widetilde{A} A 又属于 B ~ \widetilde{B} B 的模糊子集,则有 E ( x ) ≤ A ~ ( x ) E(x) \le \widetilde{A}(x) E(x)A (x) E ( x ) ≤ B ~ ( x ) E(x) \le \widetilde{B}(x) E(x)B (x)

​ 从而 E ≤ ( A ~ ∩ B ~ ) ( x ) = m i n { A ~ ( x ) , B ~ ( x ) } = A ~ ( x ) ∩ B ~ ( x ) E \le (\widetilde{A} \cap \widetilde{B} )(x) = min\{\widetilde{A}(x) ,\widetilde{B}(x) \}= \widetilde{A}(x) \cap \widetilde{B}(x) E(A B )(x)=min{A (x),B (x)}=A (x)B (x)

​ 则 E ≤ A ~ ∩ B ~ E \le \widetilde{A} \cap \widetilde{B} EA B , 所以 A ~ ∩ B ~ \widetilde{A} \cap \widetilde{B} A B 是包含 A ~ \widetilde{A} A B ~ \widetilde{B} B 的最大公共子集。

​ (2)试证 A ~ ∪ B ~ \widetilde{A} \cup \widetilde{B} A B 是包含 A ~ \widetilde{A} A B ~ \widetilde{B} B 的最大子集.

​ 证明: ( A ~ ∪ B ~ ) ( x ) = m a x { A ~ ( x ) , B ~ ( x ) } ≥ A ~ ( x ) (\widetilde{A} \cup \widetilde{B} )(x) = max\{\widetilde{A}(x) ,\widetilde{B}(x) \} \ge \widetilde{A}(x) (A B )(x)=max{A (x),B (x)}A (x) , ( A ~ ∪ B ~ ) ( x ) = m a x { A ~ ( x ) , B ~ ( x ) } ≥ B ~ ( x ) (\widetilde{A} \cup \widetilde{B} )(x) = max\{\widetilde{A}(x) ,\widetilde{B}(x) \} \ge \widetilde{B}(x) (A B )(x)=max{A (x),B (x)}B (x)

​ 则: A ~ ∪ B ~ ⊇ A ~ \widetilde{A} \cup \widetilde{B} \supseteq \widetilde{A} A B A , A ~ ∪ B ~ ⊇ B ~ \widetilde{A} \cup \widetilde{B} \supseteq \widetilde{B} A B B

​ 若 E E E 为任一包含 A ~ \widetilde{A} A 又包含 B ~ \widetilde{B} B 的模糊子集,则有 E ( x ) ≥ A ~ ( x ) E(x) \ge \widetilde{A}(x) E(x)A (x) E ( x ) ≥ B ~ ( x ) E(x) \ge \widetilde{B}(x) E(x)B (x)

​ 从而 E ≥ ( A ~ ∪ B ~ ) ( x ) = m a x { A ~ ( x ) , B ~ ( x ) } = A ~ ( x ) ∪ B ~ ( x ) E \ge (\widetilde{A} \cup \widetilde{B} )(x) = max\{\widetilde{A}(x) ,\widetilde{B}(x) \}= \widetilde{A}(x) \cup \widetilde{B}(x) E(A B )(x)=max{A (x),B (x)}=A (x)B (x)

​ 则 E ≥ A ~ ∪ B ~ E \ge \widetilde{A} \cup \widetilde{B} EA B , 所以 A ~ ∪ B ~ \widetilde{A} \cup \widetilde{B} A B 是包含 A ~ \widetilde{A} A B ~ \widetilde{B} B 的最大子集。

8.5 设 X = [ 0 , 1 ] , A ~ ( x ) = x , A c ~ ( x ) = 1 − x X=[0,1],\tilde{A}(x)=x,\tilde{A^c}(x)=1-x X=[0,1],A~(x)=x,Ac~(x)=1x,试证不满足互补率.

​ 解 : 由题设可得
( A ~ ∪ A ~ c ) ( x ) = { 1 − x ,  当  x ⩽ 1 2 , x ,  当  > 1 2 . ( A ~ ∩ A ~ c ) ( x ) = { x ,  当  x ⩽ 1 2 , 1 − x ,  当  > 1 2 , \begin{array}{l} \left(\widetilde{A} \cup \tilde{A}^{c}\right)(x)=\left\{\begin{array}{cc} 1-x, & \text { 当 } x \leqslant \frac{1}{2}, \\ x, & \text { 当 }>\frac{1}{2} . \end{array}\right. \\ \left(\widetilde{A} \cap \tilde{A}^{c}\right)(x)=\left\{\begin{array}{cc} x, & \text { 当 } x \leqslant \frac{1}{2}, \\ 1-x, & \text { 当 }>\frac{1}{2}, \end{array}\right. \end{array} (A A~c)(x)={1x,x,  x21,  >21.(A A~c)(x)={x,1x,  x21,  >21,
​ 可得 A ~ ∪ A ~ c ≠ X ; A ~ ∩ A ~ c ≠ ∅ \widetilde{A} \cup \tilde{A}^{c} \neq X ;\qquad \widetilde{A} \cap \tilde{A}^{c} \neq \varnothing A A~c=X;A A~c= 则不满足互补率。

8.6 欲证 ( A ~ ∪ B ~ ) ∩ C ~ = ( A ~ ∩ C ~ ) ∪ ( B ~ ∩ C ~ ) (\tilde{A} \cup \tilde{B}) \cap \tilde{C}=(\tilde{A} \cap \tilde{C}) \cup(\tilde{B} \cap \tilde{C}) (A~B~)C~=(A~C~)(B~C~)

​ 证明 : => A ~ ∪ B ~ ⊃ A ~ \tilde{A} \cup \tilde{B} \supset \tilde{A} A~B~A~

( A ~ ∪ B ~ ) ∩ C ~ ⊃ A ~ ∪ C ~ (\tilde{A} \cup \tilde{B})\cap \tilde{C} \supset \tilde{A} \cup \tilde{C} (A~B~)C~A~C~

A ~ ∪ B ~ ⊃ B ~ \tilde{A} \cup \tilde{B} \supset \tilde{B} A~B~B~

( A ~ ∪ B ~ ) ∩ C ~ ⊃ B ~ ∪ C ~ (\tilde{A} \cup \tilde{B})\cap \tilde{C} \supset \tilde{B} \cup \tilde{C} (A~B~)C~B~C~

∴ ( A ~ ∪ B ~ ) ∩ C ~ ⊃ ( A ~ ∩ C ~ ) ∪ ( B ~ ∩ C ~ ) \therefore (\tilde{A} \cup \tilde{B})\cap \tilde{C} \supset (\tilde{A} \cap \tilde{C}) \cup (\tilde{B} \cap \tilde{C}) (A~B~)C~(A~C~)(B~C~)

​ <= X ∈ ( A ~ ∪ B ~ ) ∩ C ~ X \in (\tilde{A} \cup \tilde{B})\cap \tilde{C} X(A~B~)C~ X ∈ ( A ~ ∪ B ~ ) X \in (\tilde{A} \cup \tilde{B}) X(A~B~) x ∈ C x \in C xC

X ∈ A ~ X \in \tilde{A} XA~ X ∈ B ~ X \in \tilde{B} XB~ X ∈ C ~ X \in \tilde{C} XC~

​ 当 x ∈ A ~ x \in \tilde{A} xA~ 时, x ∈ ( A ~ ∩ C ~ ) x \in (\tilde{A} \cap \tilde{C}) x(A~C~) , 当 x ∈ B ~ x \in \tilde{B} xB~ 时, x ∈ ( B ~ ∩ C ~ ) x \in (\tilde{B} \cap \tilde{C}) x(B~C~) ,

∴ X ∈ ( A ~ ∩ C ~ ) ∪ ( B ~ ∩ C ~ ) \therefore X \in (\tilde{A} \cap \tilde{C}) \cup (\tilde{B} \cap \tilde{C}) X(A~C~)(B~C~)

​ 由上面可得: ( A ~ ∪ B ~ ) ∩ C ~ = ( A ~ ∩ C ~ ) ∪ ( B ~ ∩ C ~ ) (\tilde{A} \cup \tilde{B}) \cap \tilde{C}=(\tilde{A} \cap \tilde{C}) \cup(\tilde{B} \cap \tilde{C}) (A~B~)C~=(A~C~)(B~C~)

8.7 设 X = { 1 , 2 , 3 , 4 , 5 } X=\{1,2,3,4,5\} X={1,2,3,4,5},
A ~ = 0.2 x 1 + 0.7 x 2 + 1 x 3 + 0.8 x 4 + 0.3 x 5 , B ~ = 0.7 x 1 + 1 x 2 + 0.1 x 3 + 1 x 4 + 0.6 x 5 , \tilde{A} = \frac {0.2} {x_1} + \frac {0.7} {x_2} +\frac {1} {x_3}+\frac {0.8} {x_4}+\frac {0.3} {x_5}, \\ \tilde{B} = \frac {0.7} {x_1} + \frac {1} {x_2} +\frac {0.1} {x_3}+\frac {1} {x_4}+\frac {0.6} {x_5}, A~=x10.2+x20.7+x31+x40.8+x50.3,B~=x10.7+x21+x30.1+x41+x50.6,
​ 求 A ~ ∧ B ~ , A ~ ∨ B ~ , A ~ ⊕ B ~ , A ~ ⊙ B ~ \tilde{A} \wedge \tilde{B}, \tilde{A} \vee \tilde{B},\tilde{A} \oplus \tilde{B},\tilde{A} \odot \tilde{B} A~B~,A~B~,A~B~,A~B~

​ 解:
A ~ ∧ B ~ = 0.14 x 1 + 0.7 x 2 + 0.1 x 3 + 0.8 x 4 + 0.18 x 5 A ~ ∨ B ~ = 0.7 x 1 + 1 x 2 + 1 x 3 + 1 x 4 + 0.6 x 5 A ~ ⊕ B ~ = 0.9 x 1 + 1 x 2 + 1 x 3 + 1 x 4 + 0.9 x 5 A ~ ⊙ B ~ = 0 x 1 + 0.7 x 2 + 0.1 x 3 + 0.8 x 4 + 0 x 5 = 0.7 x 2 + 0.1 x 3 + 0.8 x 4 \tilde{A} \wedge \tilde{B} = \frac {0.14} {x_1} + \frac {0.7} {x_2} +\frac {0.1} {x_3}+\frac {0.8} {x_4}+\frac {0.18} {x_5} \\ \tilde{A} \vee \tilde{B}=\frac {0.7} {x_1} + \frac {1} {x_2} +\frac {1} {x_3}+\frac {1} {x_4}+\frac {0.6} {x_5} \\ \tilde{A} \oplus \tilde{B}= \frac {0.9} {x_1} + \frac {1} {x_2} +\frac {1} {x_3}+\frac {1} {x_4}+\frac {0.9} {x_5} \\ \tilde{A} \odot \tilde{B} = \frac {0} {x_1} + \frac {0.7} {x_2} +\frac {0.1} {x_3}+\frac {0.8} {x_4}+\frac {0} {x_5}=\frac {0.7} {x_2}+\frac {0.1} {x_3}+\frac {0.8} {x_4} A~B~=x10.14+x20.7+x30.1+x40.8+x50.18A~B~=x10.7+x21+x31+x41+x50.6A~B~=x10.9+x21+x31+x41+x50.9A~B~=x10+x20.7+x30.1+x40.8+x50=x20.7+x30.1+x40.8

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gouzy_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值