主成分分析(PCA)的原理就是将一个高维向量X,通过一个特殊向量矩阵U,投影到一个低维的向量空间中,表征为一个低维向量Y,并且仅仅损失了一些次要信息,也就是说,通过低维表征的向量和特征向量矩阵,可以基本重构出所对应的原始高维特征。
降维的必要性:
- 预测变量相互关联,多重共线性会导致空间的不稳定,从而导致结果的不连贯。
- 高维空间本身具有稀疏性。
过多的变量会妨碍查找规律的建立。
降维的目的:减少预测变量的个数
- 确保这些变量相互独立
- 提供一个框架来解释结果
主成分分析(PCA)的原理就是将一个高维向量X,通过一个特殊向量矩阵U,投影到一个低维的向量空间中,表征为一个低维向量Y,并且仅仅损失了一些次要信息,也就是说,通过低维表征的向量和特征向量矩阵,可以基本重构出所对应的原始高维特征。
降维的必要性:
过多的变量会妨碍查找规律的建立。
降维的目的:
减少预测变量的个数