主成分分析(PCA)

主成分分析(PCA)的原理就是将一个高维向量X,通过一个特殊向量矩阵U,投影到一个低维的向量空间中,表征为一个低维向量Y,并且仅仅损失了一些次要信息,也就是说,通过低维表征的向量和特征向量矩阵,可以基本重构出所对应的原始高维特征。
降维的必要性:

  • 预测变量相互关联,多重共线性会导致空间的不稳定,从而导致结果的不连贯。
  • 高维空间本身具有稀疏性。
  • 过多的变量会妨碍查找规律的建立。
    降维的目的:

  • 减少预测变量的个数

  • 确保这些变量相互独立
  • 提供一个框架来解释结果

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值