machine learning学习笔记(一):信息熵,条件熵,交叉熵,KL散度,互信息

本文介绍了机器学习中的信息熵、条件熵、交叉熵、KL散度和互信息等核心概念。从琴生不等式出发,深入探讨了信息熵的性质,包括其作为不确定性度量的含义,以及信息熵与log函数的关系。接着讲解了条件熵,描述了在已知条件下的不确定性变化,并分析了KL散度作为衡量概率分布差异的工具,以及它与交叉熵的密切联系。最后,阐述了互信息的概念,它是衡量两个变量之间相互依赖性的度量。
摘要由CSDN通过智能技术生成

一、琴生不等式 Jensen


由数学归纳法证明在这里插入图片描述

二、对损失函数 Logarithmic function

在这里插入图片描述

三、entropy 信息熵

信息熵代表x的不确定程度/混乱程度

![在这里插入图片描述](https://img-blog.csdnimg.cn/20200921223003329.png#pic_cente
log底数一般为2.信息熵代表着X不确定程度。

例子

在这里插入图片描述
假设X是服从二分的,那么P(X)的概率越接近0.5,x就越不确定。比如箱子里有白球、红球两种

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值