machine learning学习笔记(一):信息熵,条件熵,交叉熵,KL散度,互信息
最新推荐文章于 2024-09-12 11:45:40 发布
本文介绍了机器学习中的信息熵、条件熵、交叉熵、KL散度和互信息等核心概念。从琴生不等式出发,深入探讨了信息熵的性质,包括其作为不确定性度量的含义,以及信息熵与log函数的关系。接着讲解了条件熵,描述了在已知条件下的不确定性变化,并分析了KL散度作为衡量概率分布差异的工具,以及它与交叉熵的密切联系。最后,阐述了互信息的概念,它是衡量两个变量之间相互依赖性的度量。
摘要由CSDN通过智能技术生成