Python调用华为API实现名人识别

1.作者介绍

张美灵,女,西安工程大学电子信息学院,2021级硕士研究生
研究方向:激光散斑测速
电子邮件:996400429@qq.com

孟莉苹,女,西安工程大学电子信息学院,2021级硕士研究生,张宏伟人工智能课题组
研究方向:机器视觉与人工智能
电子邮件:2425613875@qq.com

2.华为云名人识别API介绍

2.1 华为云名人识别API

接口描述:分析并识别图片中包含的政治人物、明星及网红人物,返回人物信息及人脸坐标。

2.2 使用AK,SK方式调用API步骤

步骤图

3.项目实现过程

3.1开通名人识别服务
在这里插入图片描述

3.2获取AK,SK
在这里插入图片描述

3.3进入API exploer进行调试
在这里插入图片描述

在调试台进行调试时需要注意的是:华为云名人识别API可使用的地区,获取图片的方式,显示调试成功后即可在右上方的代码示例中选择相应的语言代码。
在这里插入图片描述

3.4在pycharm安装核心库和图像服务库
在这里插入图片描述

3.5代码实现

#coding: utf-8

from huaweicloudsdkcore.auth.credentials import BasicCredentials
from huaweicloudsdkcore.exceptions import exceptions
from huaweicloudsdkcore.http.http_config import HttpConfig
from huaweicloudsdkimage.v2 import ImageClient, RunCelebrityRecognitionRequest, CelebrityRecognitionReq
from huaweicloudsdkimage.v2.region.image_region import ImageRegion

if __name__ == "__main__":
    ak = "appkey"
    sk = "secret key"

    credentials = BasicCredentials(ak, sk)

    client = ImageClient.new_builder() \
        .with_credentials(credentials) \
        .with_region(ImageRegion.value_of("cn-north-4")) \
        .build()

    try:
        request = RunCelebrityRecognitionRequest()
        request.body = CelebrityRecognitionReq(
            threshold=0,
            url="https://s2.loli.net/2022/03/15/gjUadDr7vNouCpL.jpg"
        )
        response = client.run_celebrity_recognition(request)
        print(response.status_code)
        print(response)
    except exceptions.ClientRequestException as e:
        print(e.status_code)
        print(e.request_id)
        print(e.error_code)
        print(e.error_msg)

3.6测试结果

在这里插入图片描述

4.问题与分析

1.若出现错误码400,即说明图片的url不合法,我们需要正确的图片url格式。
在这里插入图片描述

解决:利用第三方网站生成正确的url。

中文信息计算机自动处理的研究已有几十年的 历史 , 但至今仍有许多技术难题没有得到很好解 决 , 中文姓名自动识别问题就是其中的一个。由于 它与中文文本的自动分词一样 , 属于中文信息处理 的基础研究领域 , 因而它的研究成果直接影响到中 文信息的深层次研究。汉语的自身特点使得中文信 息自动处理大多是先对要处理的文本进行自动分词 (加入显式分割符) , 然后再在分词的基础上进行词 法、语法、语义等方面的深入分析。而在分词阶 段 , 文本中的人名、地名以及其它专有名词和生词 大多被切分成单字词 , 在这种情形下如不能很好地 解决汉语文本中专有名词生词的识别问题 , 将给其 后的汉语文本的深入分析带来难以逾越的障碍。中 文姓名的自动识别问题就是在这种背景下提出来 的。对这一问题的研究目前采用的技术中主要利用 以下几方面的信息: 姓名用字的频率信息、上下文 信息[1 ,2 ] 、语料库统计信息[2 ] 、词性信息等[3 ] 。本 文的方法是 , 首先对中文人名的构成、姓名用字的 规律及上下文文本信息特征进行充分分析 , 在此基 础上建立起两组规则集 , 将其作用于测试文本 , 获 得初步识别结果 , 再利用大规模语料库的统计信息 对初步识别结果进行概率筛选 , 设定合适的阈值 , 输出最终识别结果。经对 50 多万字的开放语料测 试 , 系统自动识别出 1781 个中文人名 , 在不同的 筛选阈值下获得 90 %以上的识别准确率 , 而召回 率高于 91 %。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值