PaddleHub识别中文人名实战记录及心得

本文介绍了使用PaddleHub进行中文人名识别的实战经历,强调了PaddleHub模型的丰富性、易用性和高效性,特别是在文本处理任务中的优秀表现。通过示例展示了模型的高准确性,指出它是目前作者使用过的最精确的中文分词工具。
摘要由CSDN通过智能技术生成

一,简介与特性

便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和一键预测。配合使用Fine-tune API,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用,PaddleHub旨在为开发者提供丰富的、高质量的、直接可用的预训练模型

【模型种类丰富】: 涵盖大模型、CV、NLP、Audio、Video、工业应用主流六大品类的 400+ 预训练模型,全部开源下载,离线可运行

【超低使用门槛】:无需深度学习背景、无需数据与训练过程,可快速使用AI模型

【一键模型快速预测】:通过一行命令行或者极简的Python API实现模型调用,可快速体验模型效果

【一键模型转服务化】:一行命令,搭建深度学习模型API服务化部署能力

【跨平台兼容性】:可运行于Linux、Windows、MacOS等多种操作系统

二,使用场景

图像类(212个)

  • 包括图像分类、人脸检测、口罩检测、车辆检测、人脸/人体/手部关键点检测、人像分割、80+
中文信息计算机自动处理的研究已有几十年的 历史 , 但至今仍有许多技术难题没有得到很好解 决 , 中文姓名自动识别问题就是其中的一个。由于 它与中文文本的自动分词一样 , 属于中文信息处理 的基础研究领域 , 因而它的研究成果直接影响到中 文信息的深层次研究。汉语的自身特点使得中文信 息自动处理大多是先对要处理的文本进行自动分词 (加入显式分割符) , 然后再在分词的基础上进行词 法、语法、语义等方面的深入分析。而在分词阶 段 , 文本中的人名、地名以及其它专有名词和生词 大多被切分成单字词 , 在这种情形下如不能很好地 解决汉语文本中专有名词生词的识别问题 , 将给其 后的汉语文本的深入分析带来难以逾越的障碍。中 文姓名的自动识别问题就是在这种背景下提出来 的。对这一问题的研究目前采用的技术中主要利用 以下几方面的信息: 姓名用字的频率信息、上下文 信息[1 ,2 ] 、语料库统计信息[2 ] 、词性信息等[3 ] 。本 文的方法是 , 首先对中文人名的构成、姓名用字的 规律及上下文文本信息特征进行充分分析 , 在此基 础上建立起两组规则集 , 将其作用于测试文本 , 获 得初步识别结果 , 再利用大规模语料库的统计信息 对初步识别结果进行概率筛选 , 设定合适的阈值 , 输出最终识别结果。经对 50 多万字的开放语料测 试 , 系统自动识别出 1781 个中文人名 , 在不同的 筛选阈值下获得 90 %以上的识别准确率 , 而召回 率高于 91 %。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值