[markdown语法]公式篇--整理总结了常用的公式语法全

一、公式部分

前言
行内公式:$公式$
行间公式:$$公式$$

1.1 常用符号标注

1.1.1 上下标

数学符号实际效果语法
向量 a ⃗ \vec{a} a \vec{a}​ 向量
平均值 a ‾ \overline{a} a\overline{a}
估计值 a ^ \widehat{a} a \widehat{a}
颚化符号 等价无穷小 a ~ \widetilde{a} a \widetilde{a}
一阶导数 a ˙ \dot{a} a˙\dot{a}
二阶导数 a ¨ \ddot{a} a¨\ddot{a}
a ˇ \check{a} aˇ\check{a}
a ˘ \breve{a} a˘\breve{a}
a ˋ \grave{a} aˋ\grave{a}
a ˊ \acute{a} aˊ\acute{a}
y x \stackrel{x}{y} yx\stackrel{x}{y}
y z \overset{z}{y} yz\overset{z}{y}
y x \underset{x}{y} xy\underset{x}{y}
上标 x y x^y xyx^y
下标 x y x_y xyx_y
复杂上下标 2 1 ⨂ 3 4 {^1_2}\bigotimes_3^4 2134\sideset{^1_2}{^3_4}\bigotimes

1.1.2 分式

实际效果语法
1 / 2 1/2 1/21/2
1 2 \frac{1}{2} 21\frac{1}{2}

1.1.3 省略号

实际效果语法
⋯ \cdots \cdots

1.1.4 开根号

实际效果语法
2 \sqrt{2} 2 \sqrt{2}

1.2 复杂数学符号

形式实际效果语法
1.求和 y = ∑ i = 1 n x i y = \sum_{i=1}^{n}{x_i} y=i=1nxiy = \sum_{i=1}^{n}{x_i}
y = ∑ y → 0 x → ∞ x y y=\sum^{x \to \infty}_{y \to 0}{\frac{x}{y}} y=y0xyxy=\sum^{x \to \infty}_{y \to 0}{\frac{x}{y}}
2.极限 lim ⁡ y → 0 x → ∞ x y \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}} limy0xyx\lim^{x \to \infty}_{y \to 0}{\frac{x}{y}}
lim ⁡ y → 0 x → ∞ x y \displaystyle \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}} y0limxyx\displaystyle \lim^{x \to \infty}_{y \to 0}{\frac{x}{y}}
3.开方 x \sqrt x x \sqrt x
x + y 3 \sqrt[3]{x+y} 3x+y \sqrt[3]{x+y}
4.微积分 ∫ 0 ∞ x d x \int^{\infty}_{0}{xdx} 0xdx\int^{\infty}_{0}{xdx}
∬ \iint \iint
∭ \iiint \iiint
∮ \oint \oint
∂ f ∂ x \dfrac{\partial f}{\partial x} xf\dfrac{\partial f}{\partial x}
∂ x 2 ∂ y 2 \frac{\partial x^2}{\partial y^2} y2x2\frac{\partial x^2}{\partial y^2}
∂ f ( x , y ) ∂ x ∣ x = 0 \frac{\partial f(x,y)}{\partial x} \vert _{x=0} xf(x,y)x=0\frac{\partial f(x,y)}{\partial x} \vert _{x=0}
y ′ x y{\prime}x yxy{\prime}x
∇ \nabla \nabla
∞ \infty \infty
5.向量 x y → \overrightarrow{xy} xy \overrightarrow{xy}
矢量 x ⃗ \vec x x \vec x
x y z ‾ \overline{xyz} xyz\overline{xyz}
x y z ‾ ‾ \overline{x\overline{yz}} xyz\overline{x\overline{yz}}
x y z ‾ \underline{xyz} xyz\underline{xyz}
6.累乘 ∏ n = 1 99 x n \prod_{n=1}^{99}{x_n} n=199xn\prod_{n=1}^{99}{x_n}
∏ n = 1 99 x n \displaystyle \prod_{n=1}^{99}{x_n} n=199xn\displaystyle \prod_{n=1}^{99}{x_n}
7.箭头 a ← b → c ↔ d ⇔ e ⇌ f a \leftarrow b \rightarrow c \leftrightarrow d \Leftrightarrow e \rightleftharpoons f abcdefa \leftarrow b \rightarrow c \leftrightarrow d \Leftrightarrow e \rightleftharpoons f
a ⟵ b ⟶ c ⟺ d a \longleftarrow b \longrightarrow c \Longleftrightarrow d abcda \longleftarrow b \longrightarrow c \Longleftrightarrow d
a ↗ b ↘ c ↖ d ↘ e a \nearrow b \searrow c \nwarrow d \searrow e abcdea \nearrow b \searrow c \nwarrow d \searrow e
a ↑ b ↓ c ⇑ d ⇓ e a \uparrow b \downarrow c \Uparrow d \Downarrow e abcdea \uparrow b \downarrow c \Uparrow d \Downarrow e
a ⇀ b ⇁ c ↼ d ↽ e a \rightharpoonup b \rightharpoondown c \leftharpoonup d \leftharpoondown e abcdea \rightharpoonup b \rightharpoondown c \leftharpoonup d \leftharpoondown e
8.逻辑运算符 ∀ a ∃ b \forall a \exists b ab\forall a \exists b
¬ a ⋁ b ⋀ \lnot a \bigvee b \bigwedge ¬ab\lnot a \bigvee b \bigwedge
∵ a ∴ b \because a \therefore b ab\because a \therefore b
9.集合符号 X ∪ Y ⋃ Z ∩ W X\cup Y \bigcup Z\cap W XYZWX\cup Y \bigcup Z\cap W
X ⊂ Y ⊄ Z ⊆ W ⊈ U X \subset Y \not\subset Z \subseteq W \not\subseteq U XYZWUX \subset Y \not\subset Z \subseteq W \not\subseteq U
c ∈ d ∉ e c \in d \notin e cd/ec \in d \notin e
∅ \emptyset \emptyset
∅ \varnothing \varnothing
10.取整 ⌈ x 2 ⌉ \lceil \frac{x}{2} \rceil 2x\lceil \frac{x}{2} \rceil
⌊ x ⌋ \lfloor x \rfloor x\lfloor x \rfloor
11.括号 ( n k ) \tbinom{n}{k} (kn)\tbinom{n}{k}
( n k ) \binom{n}{k} (kn)\binom{n}{k}
( n k ) \dbinom{n}{k} (kn)\dbinom{n}{k}
{ n k } {n\brace k} {kn}{n\brace k}
( n k ) {n\choose k} (kn){n\choose k}
[ n k ] {n\brack k} [kn]{n\brack k}
1 + 2 + ⋯ + 100 ⏞ \overbrace{1+2+\cdots+100} 1+2++100 \overbrace{1+2+\cdots+100}
1 + 2 + ⋯ + 100 ⏟ \underbrace{1+2+\cdots+100} 1+2++100\underbrace{1+2+\cdots+100}
5050 1 + 2 + ⋯ + 100 ⏞ 5050 \overbrace {1+2+⋯+100} 50501+2++100 5050 \overbrace {1+2+⋯+100}
12. 矩阵 0 1 3 4 \begin{matrix} 0 & 1 \\ 3 & 4 \\ \end{matrix} 0314\begin{matrix} 0 & 1 \\ 3 & 4 \\ \end{matrix}​
( 0 1 3 4 ) \begin{pmatrix} 0 & 1 \\ 3 & 4 \\ \end{pmatrix} (0314)\begin{pmatrix} 0 & 1 \\ 3 & 4 \\ \end{pmatrix}
∣ 0 1 3 4 ∣ \begin{vmatrix} 0 & 1 \\ 3 & 4 \\ \end{vmatrix} 0314\begin{vmatrix} 0 & 1 \\ 3 & 4 \\ \end{vmatrix}
∥ 0 1 3 4 ∥ \begin{Vmatrix} 0 & 1 \\ 3 & 4 \\ \end{Vmatrix} 0314\begin{Vmatrix} 0 & 1 \\ 3 & 4 \\ \end{Vmatrix}
[ 0 1 3 4 ] \begin{bmatrix} 0 & 1 \\ 3 & 4 \\ \end{bmatrix} [0314]\begin{bmatrix} 0 & 1 \\ 3 & 4 \\ \end{bmatrix}
{ 0 1 3 4 } \begin{Bmatrix} 0 & 1 \\ 3 & 4 \\ \end{Bmatrix} {0314}\begin{Bmatrix} 0 & 1 \\ 3 & 4 \\ \end{Bmatrix}

1.3 关系运算符

实际效果语法
≠ \neq =\neq
≤ \leq \leq
≥ \geq \geq
≈ \approx \approx
≮ \not\lt <\not\lt
> \gt >\gt
≫ \gg \gg
⋘ \lll \lll
± \pm ±\pm
× \times ×\times
÷ \div ÷\div
∣ \mid \mid
∗ \ast \ast
∠ \angle \angle
⊥ \bot \bot
⊙ a n d ⨀ \odot and\bigodot and\odot and\bigodot
⊗ a n d ⨂ \otimes and \bigotimes and\otimes and \bigotimes

1.4 三角函数

实际效果表示
sin ⁡ 3 0 ∘ \sin 30^\circ sin30\sin 30^\circ
cos ⁡ 3 0 ∘ \cos30^\circ cos30\cos 30^\circ
tan ⁡ 3 0 ∘ \tan30^\circ tan30\tan30^\circ

1.5 对数函数

实际效果语法
ln ⁡ 2 \ln 2 ln2\ln 2
log ⁡ 2 8 \log_2 8 log28\log_2 8
lg ⁡ 10 \lg 10 lg10\lg 10

1.6 大型关系式

1.6.1 矩阵

% 可将 [] 换成 () 或 ||...
\left[   
\begin{array}{ccc|c}
    \psi(x) & g(x)   & \cdots  & a_{1n} \\
    \hline
    a_{21}  & a_{22} & \dots   & a_{2n} \\
    \vdots  & \vdots & \ddots  & \vdots \\
    a_{n1}  & a_{n2} & ...     & a_{nn}
\end{array}
\right]

[ ψ ( x ) g ( x ) ⋯ a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 . . . a n n ] \left[ \begin{array}{ccc|c} \psi(x) & g(x) & \cdots & a_{1n} \\ \hline a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & ... & a_{nn} \end{array} \right] ψ(x)a21an1g(x)a22an2...a1na2nann

$$
\begin{bmatrix}
    1 & x_{0} &...      & x_{0}^{n} \\
    1 & x_{1} &...  	 & x_{1}^{n} \\
    &       & \cdots  & \\
    1 & x_{n} & \dots   & x_{n}^{n}
\end{bmatrix}
\begin{bmatrix}
    a_{0}\\ a_{1}\\ ...\\ a_{n}
\end{bmatrix}=
\begin{bmatrix}
    y_{0}\\ y_{1}\\ ...\\ y_{n}
\end{bmatrix}
$$

[ 1 x 0 . . . x 0 n 1 x 1 . . . x 1 n ⋯ 1 x n … x n n ] [ a 0 a 1 . . . a n ] = [ y 0 y 1 . . . y n ] \begin{bmatrix} 1 & x_{0} &... & x_{0}^{n} \\ 1 & x_{1} &... & x_{1}^{n} \\ & & \cdots & \\ 1 & x_{n} & \dots & x_{n}^{n} \end{bmatrix} \begin{bmatrix} a_{0}\\ a_{1}\\ ...\\ a_{n} \end{bmatrix}= \begin{bmatrix} y_{0}\\ y_{1}\\ ...\\ y_{n} \end{bmatrix} 111x0x1xn......x0nx1nxnna0a1...an=y0y1...yn

1.6.2 方程式

$$
\begin{cases}
    a_{0}+a_{1}x_{0}+...+a_{n}x_{0}^{n}=y_{0} \\
    a_{0}+a_{1}x_{1}+...+a_{n}x_{1}^{n}=y_{1} \\
    \cdots\\
    a_{0}+a_{1}x_{n}+...+a_{n}x_{n}^{n}=y_{n}
\end{cases}
$$

{ a 0 + a 1 x 0 + . . . + a n x 0 n = y 0 a 0 + a 1 x 1 + . . . + a n x 1 n = y 1 ⋯ a 0 + a 1 x n + . . . + a n x n n = y n \begin{cases} a_{0}+a_{1}x_{0}+...+a_{n}x_{0}^{n}=y_{0} \\ a_{0}+a_{1}x_{1}+...+a_{n}x_{1}^{n}=y_{1} \\ \cdots\\ a_{0}+a_{1}x_{n}+...+a_{n}x_{n}^{n}=y_{n} \end{cases} a0+a1x0+...+anx0n=y0a0+a1x1+...+anx1n=y1a0+a1xn+...+anxnn=yn

1.6.3 等式

% 使用 \& 使 = 左对齐

$$
\begin{aligned}
    (f,K^{'}_{x}y+K^{''}_{x}y)_{F}
    &=(f^{'}+f^{''},K^{'}_{x}y+K^{''}_{x}y)_{F}\\
    &=(f^{'},K^{'}_{x}y)_{F}+(f^{''},K^{''}_{x}y)_{F}+(f^{'},K^{''}_{x}y)_{F}+(f^{''},K^{'}_{x}y)_{F}\\
    &=(f^{'},K^{'}_{x}y)_{F}+(f^{''},K^{''}_{x}y)_{F}\\
    &=(f^{'}(x),y)_{Y}+(f^{''}(x),y)_{Y}\\
    &=(f^{'}(x)+f^{''}(x),y)_{Y}\\
    &=(f(x),y)_{Y}\\
    &=(f,K_{x}y)_{F}
\end{aligned}
$$

( f , K x ′ y + K x ′ ′ y ) F = ( f ′ + f ′ ′ , K x ′ y + K x ′ ′ y ) F = ( f ′ , K x ′ y ) F + ( f ′ ′ , K x ′ ′ y ) F + ( f ′ , K x ′ ′ y ) F + ( f ′ ′ , K x ′ y ) F = ( f ′ , K x ′ y ) F + ( f ′ ′ , K x ′ ′ y ) F = ( f ′ ( x ) , y ) Y + ( f ′ ′ ( x ) , y ) Y = ( f ′ ( x ) + f ′ ′ ( x ) , y ) Y = ( f ( x ) , y ) Y = ( f , K x y ) F \begin{aligned} (f,K^{'}_{x}y+K^{''}_{x}y)_{F} &=(f^{'}+f^{''},K^{'}_{x}y+K^{''}_{x}y)_{F}\\ &=(f^{'},K^{'}_{x}y)_{F}+(f^{''},K^{''}_{x}y)_{F}+(f^{'},K^{''}_{x}y)_{F}+(f^{''},K^{'}_{x}y)_{F}\\ &=(f^{'},K^{'}_{x}y)_{F}+(f^{''},K^{''}_{x}y)_{F}\\ &=(f^{'}(x),y)_{Y}+(f^{''}(x),y)_{Y}\\ &=(f^{'}(x)+f^{''}(x),y)_{Y}\\ &=(f(x),y)_{Y}\\ &=(f,K_{x}y)_{F} \end{aligned} (f,Kxy+Kxy)F=(f+f,Kxy+Kxy)F=(f,Kxy)F+(f,Kxy)F+(f,Kxy)F+(f,Kxy)F=(f,Kxy)F+(f,Kxy)F=(f(x),y)Y+(f(x),y)Y=(f(x)+f(x),y)Y=(f(x),y)Y=(f,Kxy)F

1.7 二十四个希腊字母

序号小写表示大写表示
1 α \alpha α\alpha A \Alpha A\Alpha
2 β \beta β\beta B \Beta B\Beta
3 γ \gamma γ\gamma Γ \Gamma Γ\Gamma
4 δ \delta δ\delta Δ \Delta Δ\Delta
5 ϵ \epsilon ϵ\epsilon E \Epsilon E\Epsilon
ε \varepsilon ε\varepsilon
6 ζ \zeta ζ\zeta Z \Zeta Z\Zeta
7 η \eta η\eta H \Eta H\Eta
8 θ \theta θ\theta Θ \Theta Θ\Theta
9 ι \iota ι\iota I \Iota I\Iota
10 κ \kappa κ\kappa K \Kappa K\Kappa
11 λ \lambda λ\lambda Λ \Lambda Λ\Lambda
12 μ \mu μ\mu M \Mu M\Mu
13 ν \nu ν\nu N \Nu N\Nu
14 ξ \xi ξ\xi Ξ \Xi Ξ\Xi
15 ο \omicron ο\omicron O \Omicron O\Omicron
16 π \pi π\pi Π \Pi Π\Pi
17 ρ \rho ρ\rho P \Rho P\Rho
18 σ \sigma σ\sigma Σ \Sigma Σ\Sigma
19 τ \tau τ\tau T \Tau T\Tau
20 υ \upsilon υ\upsilon Υ \Upsilon Υ\Upsilon
21 ϕ \phi ϕ\phi Φ \Phi Φ\Phi
φ \varphi φ\varphi
22 χ \chi χ\chi X \Chi X\Chi
23 ψ \psi ψ\psi Ψ \Psi Ψ\Psi
24 ω \omega ω\omega Ω \Omega Ω\Omega

1.8 注意事项

1.8.1 字体变换

若要对公式的某一部分字符进行字体转换,可以用 {\字体 {需转换的部分字符}} 命令,其中 \字体 部分可以参照下表选择合适的字体。

语法说明显示
\rm罗马体 S a m p l e \rm{Sample} Sample
\it意大利体 S a m p l e \it{Sample} Sample
\bf粗体 S a m p l e \bf{Sample} Sample
\sf等线体 S a m p l e \sf{Sample} Sample
\tt打字机体 S a m p l e \tt{Sample} Sample
\frak旧德式字体 S a m p l e \frak{Sample} Sample
\cal花体KaTeX parse error: Undefined control sequence: \cal at position 1: \̲c̲a̲l̲{SAMPLE}
\Bbb黑板粗体 S A M P L E \Bbb{SAMPLE} SAMPLE
\mit数学斜体KaTeX parse error: Undefined control sequence: \mit at position 1: \̲m̲i̲t̲{SAMPLE}
\scr手写体KaTeX parse error: Undefined control sequence: \scr at position 1: \̲s̲c̲r̲{SAMPLE}

部分字体显示不出是因为不同markdown编辑器规则不同,大部分编辑器支持使用。

1.8.2 在字符中添加空格

有四种宽度的空格可以使用: \,\;\quad\qquad

语法显示
\, a   b a \, b ab
\; a    b a \; b ab
\quad a b a \quad b ab
\qquad a b a \qquad b ab

1.8.3 添加注释文字

\text {文字} 中仍可以使用 $公式$ 插入其它公式

$$
f(n)= \begin{cases}
n/2, & \text {if $n$ is even} \\
3n+1, & \text{if $n$ is odd}
\end{cases}
$$

f ( n ) = { n / 2 , if  n  is even 3 n + 1 , if  n  is odd f(n)= \begin{cases} n/2, & \text {if $n$ is even} \\ 3n+1, & \text{if $n$ is odd} \end{cases} f(n)={n/2,3n+1,if n is evenif n is odd

1.8.4 更改文字颜色

使用 \color{颜色}{文字} 来更改特定的文字颜色。更改文字颜色 需要浏览器支持 ,如果浏览器不知道你所需的颜色,那么文字将被渲染为黑色。

对于较旧的浏览器(HTML4与CSS2),以下颜色是被支持的:

输入显示输入显示
black t e x t \color{black}{text} textgrey t e x t \color{grey}{text} text
silver t e x t \color{silver}{text} textwhite t e x t \color{white}{text} text
maroon t e x t \color{maroon}{text} textred t e x t \color{red}{text} text
yellow t e x t \color{yellow}{text} textlime t e x t \color{lime}{text} text
olive t e x t \color{olive}{text} textgreen t e x t \color{green}{text} text
teal t e x t \color{teal}{text} textauqa t e x t \color{auqa}{text} text
blue t e x t \color{blue}{text} textnavy t e x t \color{navy}{text} text
purple t e x t \color{purple}{text} textfuchsia t e x t \color{fuchsia}{text} text

对于较新的浏览器(HTML5与CSS3),额外的124种颜色将被支持:

输入 \color {#rgb} {text} 来自定义更多的颜色,其中 #rgbr g b 可输入 0-9a-f 来表示红色、绿色和蓝色的纯度(饱和度)。

\begin{array}{|rrrrrrrr|}\hline
\verb+#000+ & \color{#000}{text} & & &
\verb+#00F+ & \color{#00F}{text} & & \\
& & \verb+#0F0+ & \color{#0F0}{text} &
& & \verb+#0FF+ & \color{#0FF}{text}\\
\verb+#F00+ & \color{#F00}{text} & & &
\verb+#F0F+ & \color{#F0F}{text} & & \\
& & \verb+#FF0+ & \color{#FF0}{text} &
& & \verb+#FFF+ & \color{#FFF}{text}\\
\hline
\end{array}

\begin{array}{|rrrrrrrr|}\hline
\verb+#000+ & \color{#000}{text} & & &
\verb+#00F+ & \color{#00F}{text} & & \
& & \verb+#0F0+ & \color{#0F0}{text} &
& & \verb+#0FF+ & \color{#0FF}{text}\
\verb+#F00+ & \color{#F00}{text} & & &
\verb+#F0F+ & \color{#F0F}{text} & & \
& & \verb+#FF0+ & \color{#FF0}{text} &
& & \verb+#FFF+ & \color{#FFF}{text}\
\hline
\end{array}

#000 t e x t #00F t e x t #0F0 t e x t #0FF t e x t #F00 t e x t #F0F t e x t #FF0 t e x t #FFF t e x t \begin{array}{|rrrrrrrr|}\hline \verb+#000+ & \color{#000}{text} & & & \verb+#00F+ & \color{#00F}{text} & & \\ & & \verb+#0F0+ & \color{#0F0}{text} & & & \verb+#0FF+ & \color{#0FF}{text}\\ \verb+#F00+ & \color{#F00}{text} & & & \verb+#F0F+ & \color{#F0F}{text} & & \\ & & \verb+#FF0+ & \color{#FF0}{text} & & & \verb+#FFF+ & \color{#FFF}{text}\\ \hline \end{array} #000#F00texttext#0F0#FF0texttext#00F#F0Ftexttext#0FF#FFFtexttext

1.8.5 添加删除线

在公式内使用 \require{cancel} 来允许 片段删除线 的显示。声明片段删除线后,使用 \cancel{字符}\bcancel{字符}\xcancel{字符}\cancelto{字符} 来实现各种片段删除线效果

$$
\require{cancel}\begin{array}{rl}
\verb|y+\cancel{x}| & y+\cancel{x}\\
\verb|\cancel{y+x}| & \cancel{y+x}\\
\verb|y+\bcancel{x}| & y+\bcancel{x}\\
\verb|y+\xcancel{x}| & y+\xcancel{x}\\
\verb|y+\cancelto{0}{x}| & y+\cancelto{0}{x}\\
\verb+\frac{1\cancel9}{\cancel95} = \frac15+& \frac{1\cancel9}{\cancel95} = \frac15 \\
\end{array}
$$

删除线实际效果

Markdown语法中的公式可以通过使用$符号来包裹,以表示行内公式。例如,$A_1^2$表示上标和下标的组合。 在Typora中,常用的数学编辑公式包括上下标和指数、分数等。可以使用$$包裹公式,然后使用例如$A_{12}$、$2^{x^2 y}$来表示上下标。 此外,Markdown中还可以使用&符号来表示对齐,使用\\表示换行,\qquad表示空格。例如,可以使用$$来表示多个条件下的函数名,并使用\\换行和\qquad来排版空格。 总结来说,Markdown语法中的公式可以通过$来包裹,使用上下标、指数等来表示公式的各个元素。在Typora中,还可以使用&表示对齐,\\表示换行,\qquad表示空格来排版公式。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [MarkDown数学公式基本语法](https://blog.csdn.net/qq_38342510/article/details/124064158)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [markdown公式](https://blog.csdn.net/jzj_c_love/article/details/122279703)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值