HDU 3480 Division 斜率DP

Division HDU - 3480

T T T 表示一个整数的集合, M I N , M A X MIN,MAX MIN,MAX 分别是这个集合中最小和最大的数,定义这个集合的花费为 ( M A X − M I N ) 2 (MAX-MIN)^2 (MAXMIN)2

先给定一个整数集合 S S S,希望找到 M M M S S S 的子集 S 1 , S 2 , ⋯ S M S_1,S_2,\cdots S_M S1,S2,SM,使得 S 1 ∪ S 2 ∪ ⋯ ∪ S M = S S_1\cup S_2\cup\cdots\cup S_M=S S1S2SM=S,并且整体的花费最小。

要使花费小的话肯定要保证集合中最大值和最小值的差较小。首先对元素进行排序,然后用 d p [ i ] [ j ] dp[i][j] dp[i][j] 表示前 i i i 个数分成 j j j 个集合的最小花费,递推方程为:

d p [ i ] [ j ] = min ⁡ { d p [ k ] [ j − 1 ] + ( a [ i ] − a [ k + 1 ] ) 2 } dp[i][j]=\min\{dp[k][j-1]+(a[i]-a[k+1])^2\} dp[i][j]=min{dp[k][j1]+(a[i]a[k+1])2}

还需要考虑的是两个子集之间的元素有可能重复,但是可以证明,子集尽量不相交时可使花费最小:假如子集够多,那么每个元素单独成一个子集,这样的花费是最小的。

再设 k 1 < k 2 k_1<k_2 k1<k2 k 2 k_2 k2 优于 k 1 k_1 k1,则:

d p [ k 2 ] [ j − 1 ] + ( a [ i ] − a [ k 2 + 1 ] ) 2 < d p [ k 1 ] [ j − 1 ] + ( a [ i ] − a [ k 1 + 1 ] ) 2 d p [ k 2 ] [ j − 1 ] + a 2 [ k 2 + 1 ] − ( d p [ k 1 ] [ j − 1 ] + a 2 [ k 1 + 1 ] ) < 2 a [ i ] ( a [ k 2 + 1 ] − a [ k 1 + 1 ] ) y k 2 − y k 1 x k 2 − x k 1 < 2 a [ i ] \begin{aligned} dp[k_2][j-1]+(a[i]-a[k_2+1])^2&<dp[k_1][j-1]+(a[i]-a[k_1+1])^2\\ dp[k_2][j-1]+a^2[k_2+1]-(dp[k_1][j-1]+a^2[k_1+1])&<2a[i](a[k_2+1]-a[k_1+1])\\ \frac{y_{k_2}-y_{k_1}}{x_{k_2}-x_{k_1}}&<2a[i] \end{aligned} dp[k2][j1]+(a[i]a[k2+1])2dp[k2][j1]+a2[k2+1](dp[k1][j1]+a2[k1+1])xk2xk1yk2yk1<dp[k1][j1]+(a[i]a[k1+1])2<2a[i](a[k2+1]a[k1+1])<2a[i]

其中 y k = d p [ k ] [ j − 1 ] + a 2 [ k + 1 ] , x k = a [ k + 1 ] y_k=dp[k][j-1]+a^2[k+1],x_k=a[k+1] yk=dp[k][j1]+a2[k+1],xk=a[k+1] a [ i ] a[i] a[i] 为排序后第 i i i 个元素的值。

代码如下:

#include<iostream>
#include<cstdio>
#include<algorithm>
//#define WINE
#define MAXN 10010
using namespace std;
int T,iCase,n,m,a[MAXN],h,t,q[MAXN],dp[MAXN][MAXN];
int up(int k2,int k1,int j){
    return dp[k2][j-1]+a[k2+1]*a[k2+1]-(dp[k1][j-1]+a[k1+1]*a[k1+1]);
}
int down(int k2,int k1){
    return a[k2+1]-a[k1+1];
}
int getDP(int k,int i,int j){
    return dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1]);
}
int main(){
#ifdef WINE
    freopen("data.in","r",stdin);
#endif
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)scanf("%d",&a[i]);
        sort(a+1,a+1+n);
        for(int i=1;i<=n;i++)dp[i][1]=(a[i]-a[1])*(a[i]-a[1]);
        for(int j=2;j<=m;j++){
            h=t=0;q[t++]=j-1;
            for(int i=j;i<=n;i++){
                while(h+1<t&&up(q[h+1],q[h],j)<2*a[i]*down(q[h+1],q[h]))
                    h++;
                dp[i][j]=getDP(q[h],i,j);
                while(h+1<t&&up(i,q[t-1],j)*down(q[t-1],q[t-2])<=up(q[t-1],q[t-2],j)*down(i,q[t-1]))
                    t--;
                q[t++]=i;
            }
        }
        printf("Case %d: %d\n",++iCase,dp[n][m]);
    }
    return 0;
}

在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值