leetcode 62. Unique Paths (组合)

A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).

How many possible unique paths are there?

Above is a 7 x 3 grid. How many possible unique paths are there?

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:

  1. Right -> Right -> Down
  2. Right -> Down -> Right
  3. Down -> Right -> Right
    Example 2:

Input: m = 7, n = 3
Output: 28

Constraints:

1 <= m, n <= 100
It’s guaranteed that the answer will be less than or equal to 2 * 10 ^ 9.

  • 把每种走法看成一个序列,每次可以选择右或者下
  • 可以直到序列长度位 m + n − 2 m+n-2 m+n2
  • 所以走法的总数就是这个序列用 m − 1 m-1 m1 个下以及 n − 1 n-1 n1 个右填充的方法数
  • 可知答案为 C n + m − 2 m − 1 C_{n+m-2}^{m-1} Cn+m2m1
  • 防止溢出,展开计算: m × ( m + 1 ) × ⋯ × ( m + n − 2 ) / ( n − 1 ) ! m\times(m+1)\times\cdots\times (m+n-2)/(n-1)! m×(m+1)××(m+n2)/(n1)!
class Solution {
public:
    int uniquePaths(int m, int n) {
        double res=1;
        for(int i=1;i<=n-1;i++)
            res=res*(m+i-1)/i;
        return (int)res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值