A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
- Right -> Right -> Down
- Right -> Down -> Right
- Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
Constraints:
1 <= m, n <= 100
It’s guaranteed that the answer will be less than or equal to 2 * 10 ^ 9.
- 把每种走法看成一个序列,每次可以选择右或者下
- 可以直到序列长度位 m + n − 2 m+n-2 m+n−2
- 所以走法的总数就是这个序列用 m − 1 m-1 m−1 个下以及 n − 1 n-1 n−1 个右填充的方法数
- 可知答案为 C n + m − 2 m − 1 C_{n+m-2}^{m-1} Cn+m−2m−1
- 防止溢出,展开计算: m × ( m + 1 ) × ⋯ × ( m + n − 2 ) / ( n − 1 ) ! m\times(m+1)\times\cdots\times (m+n-2)/(n-1)! m×(m+1)×⋯×(m+n−2)/(n−1)!
class Solution {
public:
int uniquePaths(int m, int n) {
double res=1;
for(int i=1;i<=n-1;i++)
res=res*(m+i-1)/i;
return (int)res;
}
};