组合的性质
1.C(n,r)=C(n,n-r)=n!/r!(n-r)!
2.C(n,r)=C(n-1,r)+C(n-1,r-1)
C(n,r):从n个不同元素(a1,a2,a3,…an)中取出r个元素。
C(n-1,r):r个元素中没有a1,从n-1个不同元素(a2,a3,…an)中取出r个元素。
C(n-1,r-1):r个元素中有a1,从n-1个不同元素(a2,a3,…an)中取出r-1个元素。
3.由2得:C(n+r+1,r)=C(n+r,r)+C(n+r,r-1)
=C(n+r,r)+C(n+r-1,r-1)+C(n+r-2,r-2)+…C(n+1,1)+C(n,0)
=C(n+r,n)+C(n+r-1,n)+C(n+r-2,n)+…+C(n+1,n)+C(n,n)
4.C(n,l)C(l,r)=C(n,r)C(n-r,l-r)
5.mn=C(m+n,2)-C(m,2)-C(n,2)
m个男,n个女,两两配对。
mn:取一男一女。
C(m+n,2):随机取两人。
C(m,2):取两男。
C(n,2):取两女。
6.二项式定理(x+y)n=C(n,0)xn+C(n,1)xn-1y+C(n,2)xn-2y+…+C(n,n)yn
令x=y=1,得C(n,0)+C(n,1)+C(n,2)+…+C(n,n)=2n;
令x=1,y=-1得C(n,0)-C(n,1)+C(n,2)-…+/-C(n,n)=0;
即C(n,0)+C(n,2)+C(n,4)+…=C(n,1)+C(n,3)+C(n,5)+…
7.C(m+n,r)=C(m,0)C(n,r)+C(m,1)C(n,r-1)+…+C(m,r)C(n,0)
C(m+n,m):共有m+n个球,m红,n蓝,取出r个球。
C(m,0)C(n,r):取0红,r蓝。
C(m,1)C(n,r-1):取1红,r-1蓝。
C(m,r)C(n,0):取r红,0蓝。