排列数
从
n
n
n个物品中不放回地依次选
m
m
m个物品,考虑顺序,有多少种方案,记作
A
n
m
A_n^m
Anm
A
n
m
=
n
!
(
n
−
m
)
!
A_n^m=\frac{n!}{(n-m)!}
Anm=(n−m)!n!
组合数
从
n
n
n个物品中不放回地依次选
m
m
m个物品,不考虑顺序,有多少种方案,记作
C
n
m
C_n^m
Cnm
C
n
m
=
n
!
m
!
∗
(
n
−
m
)
!
C_n^m=\frac{n!}{m!*(n-m)!}
Cnm=m!∗(n−m)!n!
求组合数常用公式
定义式
C
n
m
=
n
!
m
!
∗
(
n
−
m
)
!
C_n^m=\frac{n!}{m!*(n-m)!}
Cnm=m!∗(n−m)!n!
当
n
,
m
n,m
n,m很大时,预处理阶乘和逆元,预处理
O
(
n
)
O(n)
O(n),求组合数
O
(
1
)
O(1)
O(1)
递推式
C n m = n ! m ! ∗ ( n − m ) ! = n ! ( m − 1 ) ! ∗ ( n − m + 1 ) ! ∗ n − m + 1 m = C n m − 1 ∗ n − m + 1 m C_n^m=\frac{n!}{m!*(n-m)!}=\frac{n!}{(m-1)!*(n-m+1)!}*\frac{n-m+1}{m}=C_n^{m-1}*\frac{n-m+1}{m} Cnm=m!∗(n−m)!n!=(m−1)!∗(n−m+1)!n!∗mn−m+1=Cnm−1∗mn−m+1
杨辉三角
C
n
m
=
n
!
m
!
∗
(
n
−
m
)
!
=
(
n
−
1
)
!
∗
(
n
−
m
+
m
)
m
!
∗
(
n
−
m
)
!
C_n^m=\frac{n!}{m!*(n-m)!}=\frac{(n-1)!*(n-m+m)}{m!*(n-m)!}
Cnm=m!∗(n−m)!n!=m!∗(n−m)!(n−1)!∗(n−m+m)
=
(
n
−
1
)
!
∗
(
n
−
m
)
m
!
∗
(
n
−
m
)
!
+
(
n
−
1
)
!
∗
m
m
!
∗
(
n
−
m
)
!
=\frac{(n-1)!*(n-m)}{m!*(n-m)!}+\frac{(n-1)!*m}{m!*(n-m)!}
=m!∗(n−m)!(n−1)!∗(n−m)+m!∗(n−m)!(n−1)!∗m
=
(
n
−
1
)
!
m
!
∗
(
n
−
m
−
1
)
!
+
(
n
−
1
)
!
(
m
−
1
)
!
∗
(
n
−
m
)
!
=\frac{(n-1)!}{m!*(n-m-1)!}+\frac{(n-1)!}{(m-1)!*(n-m)!}
=m!∗(n−m−1)!(n−1)!+(m−1)!∗(n−m)!(n−1)!
=
C
n
−
1
m
+
C
n
−
1
m
−
1
=C_{n-1}^m+C_{n-1}^{m-1}
=Cn−1m+Cn−1m−1
当模数不是质数的时候,预处理
O
(
n
2
)
O(n^2)
O(n2),求组合数
O
(
1
)
O(1)
O(1)
组合数常用性质及证明
性质一
C n m = C n n − m C_n^m=C_n^{n-m} Cnm=Cnn−m
证明:
法一:利用组合数意义理解
在
n
n
n个当中选
m
m
m个,相当于在
n
n
n个当中不选
n
−
m
n-m
n−m个
法二:公式表示
C
n
m
=
n
!
m
!
∗
(
n
−
m
)
!
C_n^m=\frac{n!}{m!*(n-m)!}
Cnm=m!∗(n−m)!n!
C
n
n
−
m
=
n
!
(
n
−
m
)
!
∗
(
n
−
(
n
−
m
)
)
!
=
n
!
m
!
∗
(
n
−
m
)
!
C_n^{n-m}=\frac{n!}{(n-m)!*(n-(n-m))!}=\frac{n!}{m!*(n-m)!}
Cnn−m=(n−m)!∗(n−(n−m))!n!=m!∗(n−m)!n!
性质二
C n + m + 1 m = ∑ i = 0 m C n + i i C_{n+m+1}^m=\sum_{i=0}^mC_{n+i}^i Cn+m+1m=i=0∑mCn+ii
证明:
利用画图以及杨辉三角得证
性质三
C n m ∗ C m r = C n r ∗ C n − r m − r C_n^m*C_m^r=C_n^r*C_{n-r}^{m-r} Cnm∗Cmr=Cnr∗Cn−rm−r
证明:
法一:利用组合数意义理解
在
n
n
n个当中选
m
m
m个,再在选出的
m
m
m个当中选
r
r
r个
相当于在
n
n
n个当中选
r
r
r个,再在剩下的
n
−
r
n-r
n−r个中选还需要的
m
−
r
m-r
m−r
法二:公式推导
C
n
m
∗
C
m
r
=
n
!
m
!
∗
(
n
−
m
)
!
∗
m
!
r
!
∗
(
m
−
r
)
!
=
n
!
∗
m
!
m
!
∗
r
!
∗
(
n
−
m
)
!
∗
(
m
−
r
)
!
C_n^m*C_m^r=\frac{n!}{m!*(n-m)!}*\frac{m!}{r!*(m-r)!}=\frac{n!*m!}{m!*r!*(n-m)!*(m-r)!}
Cnm∗Cmr=m!∗(n−m)!n!∗r!∗(m−r)!m!=m!∗r!∗(n−m)!∗(m−r)!n!∗m!
=
n
!
r
!
∗
(
n
−
m
)
!
∗
(
m
−
r
)
!
=
n
!
∗
(
n
−
r
)
!
r
!
∗
(
n
−
m
)
!
∗
(
m
−
r
)
!
∗
(
n
−
r
)
!
=\frac{n!}{r!*(n-m)!*(m-r)!}=\frac{n!*(n-r)!}{r!*(n-m)!*(m-r)!*(n-r)!}
=r!∗(n−m)!∗(m−r)!n!=r!∗(n−m)!∗(m−r)!∗(n−r)!n!∗(n−r)!
=
n
!
r
!
∗
(
n
−
r
)
!
∗
(
n
−
r
)
!
(
m
−
r
!
)
∗
(
n
−
m
)
!
{
(
n
−
r
)
−
(
m
−
r
)
=
n
−
m
}
=\frac{n!}{r!*(n-r)!}*\frac{(n-r)!}{(m-r!)*(n-m)!}\ \ \ \ \ \{(n-r)-(m-r)=n-m\}
=r!∗(n−r)!n!∗(m−r!)∗(n−m)!(n−r)! {(n−r)−(m−r)=n−m}
=
C
n
r
∗
C
n
−
r
m
−
r
=C_n^r*C_{n-r}^{m-r}
=Cnr∗Cn−rm−r
性质四(二项式定理)
∑ i = 0 n { C n i ∗ x i } = ( 1 + x ) n \sum_{i=0}^n\{C_n^i*x^i\}=(1+x)^n i=0∑n{Cni∗xi}=(1+x)n
∑ i = 0 n C n i = 2 n ( x = 1 ) \sum_{i=0}^nC_n^i=2^n\ \ \ (x=1) i=0∑nCni=2n (x=1)
证明:
组合数意义理解
(
1
+
x
)
n
=
(
1
+
x
)
∗
(
1
+
x
)
∗
.
.
.
∗
(
1
+
x
)
(1+x)^n=(1+x)*(1+x)*...*(1+x)
(1+x)n=(1+x)∗(1+x)∗...∗(1+x),
n
n
n个
(
1
+
x
)
(1+x)
(1+x)相乘
(
1
+
x
)
(1+x)
(1+x)在乘法中的贡献相当于要么选
1
1
1,要么选
x
x
x
有
i
i
i个
(
1
+
x
)
(1+x)
(1+x)中选
x
x
x,产生的贡献就是
x
i
x^i
xi,剩下的
n
−
i
n-i
n−i个
(
1
+
x
)
(1+x)
(1+x),产生的贡献是
1
1
1
在
n
n
n个中任意选
i
i
i个,相当于
C
n
i
C_n^i
Cni
性质五
∑ i = 0 n { ( − 1 ) i ∗ C n i } = 0 \sum_{i=0}^n\{(-1)^i*C_n^i\}=0 i=0∑n{(−1)i∗Cni}=0
证明:
①:若
n
n
n为奇数
则
∑
i
=
0
n
\sum_{i=0}^n
∑i=0n共有
n
+
1
n+1
n+1项(偶数项),而
(
−
1
)
i
∗
C
n
i
=
(
−
1
)
i
∗
C
n
n
−
i
(-1)^i*C_n^i=(-1)^i*C_n^{n-i}
(−1)i∗Cni=(−1)i∗Cnn−i
因为
n
n
n为奇数,所以当
i
i
i为奇数时,
n
−
i
n-i
n−i为偶数,当
i
i
i为偶数时,
n
−
i
n-i
n−i为奇数
所以
i
,
n
−
i
i,n-i
i,n−i奇偶性不同,那么
(
−
1
)
i
+
(
−
1
)
n
−
1
(-1)^i+(-1)^{n-1}
(−1)i+(−1)n−1相当于
(
−
1
)
奇
数
次
方
+
(
−
1
)
偶
数
次
方
=
0
(-1)^{奇数次方}+(-1)^{偶数次方}=0
(−1)奇数次方+(−1)偶数次方=0
(
−
1
)
i
∗
C
n
i
+
(
−
1
)
n
−
i
∗
C
n
n
−
i
=
0
(-1)^i*C_n^i+(-1)^{n-i}*C_n^{n-i}=0
(−1)i∗Cni+(−1)n−i∗Cnn−i=0
偶数项刚好每一对可以相互抵消,所以性质显然成立
②:若
n
n
n为偶数
(
−
1
)
0
=
(
−
1
)
n
=
1
(-1)^0=(-1)^n=1
(−1)0=(−1)n=1,先把
i
=
0
,
i
=
n
i=0,i=n
i=0,i=n的情况拆出来,用杨辉三角展开中间项
∑
i
=
0
n
{
(
−
1
)
i
∗
C
n
i
}
=
C
n
0
+
C
n
n
+
∑
i
=
1
n
−
1
{
(
−
1
)
i
∗
(
C
n
−
1
i
+
C
n
−
1
i
−
1
)
}
\sum_{i=0}^n\{(-1)^i*C_n^i\}=C_n^0+C_n^n+\sum_{i=1}^{n-1}\{(-1)^i*(C_{n-1}^i+C_{n-1}^{i-1})\}
i=0∑n{(−1)i∗Cni}=Cn0+Cnn+i=1∑n−1{(−1)i∗(Cn−1i+Cn−1i−1)}
C
n
0
+
C
n
n
+
∑
i
=
0
n
−
2
{
(
−
1
)
i
+
1
∗
C
n
−
1
i
}
+
∑
i
=
1
n
−
1
{
(
−
1
)
i
∗
C
n
−
1
i
}
C_n^0+C_n^n+\sum_{i=0}^{n-2}\{(-1)^{i+1}*C_{n-1}^i\}+\sum_{i=1}^{n-1}\{(-1)^i*C_{n-1}^i\}
Cn0+Cnn+i=0∑n−2{(−1)i+1∗Cn−1i}+i=1∑n−1{(−1)i∗Cn−1i}
把前一个求和加上
(
−
1
)
n
∗
C
n
−
1
n
−
1
(-1)^n*C_{n-1}^{n-1}
(−1)n∗Cn−1n−1一项,后一个求和加上
(
−
1
)
0
∗
C
n
−
1
0
(-1)^0*C_{n-1}^0
(−1)0∗Cn−10
C
n
0
+
C
n
n
+
∑
i
=
0
n
−
1
{
(
−
1
)
i
∗
C
n
−
1
i
}
−
C
n
−
1
n
−
1
+
∑
i
=
1
n
−
1
{
(
−
1
)
i
∗
C
n
−
1
i
}
−
C
n
−
1
0
C_n^0+C_n^n+\sum_{i=0}^{n-1}\{(-1)^i*C_{n-1}^i\}-C_{n-1}^{n-1}+\sum_{i=1}^{n-1}\{(-1)^i*C_{n-1}^i\}-C_{n-1}^0
Cn0+Cnn+i=0∑n−1{(−1)i∗Cn−1i}−Cn−1n−1+i=1∑n−1{(−1)i∗Cn−1i}−Cn−10
注意
n
−
1
n-1
n−1为奇数,奇数情况已经证明了,故这两个公式直接等于
0
0
0,删掉,原式转化为
C
n
0
+
C
n
n
−
C
n
−
1
0
−
C
n
−
1
n
−
1
=
0
C_n^0+C_n^n-C_{n-1}^0-C_{n-1}^{n-1}=0
Cn0+Cnn−Cn−10−Cn−1n−1=0
性质六
C n 0 + C n 2 + . . . = C n 1 + C n 3 + . . . = 2 n − 1 C_n^0+C_n^2+...=C_n^1+C_n^3+...=2^{n-1} Cn0+Cn2+...=Cn1+Cn3+...=2n−1
证明:
用杨辉三角公式暴力展开寻找规律
①假设
n
n
n为奇数
C
n
0
+
C
n
2
+
.
.
.
+
C
n
n
−
1
=
C
n
−
1
0
+
C
n
−
1
1
+
C
n
−
1
2
+
C
n
−
1
3
+
C
n
−
1
4
+
.
.
.
+
C
n
−
1
n
−
2
+
C
n
−
1
n
−
1
C_n^0+C_n^2+...+C_n^{n-1}=C_{n-1}^0+C_{n-1}^1+C_{n-1}^2+C_{n-1}^3+C_{n-1}^4+...+C_{n-1}^{n-2}+C_{n-1}^{n-1}
Cn0+Cn2+...+Cnn−1=Cn−10+Cn−11+Cn−12+Cn−13+Cn−14+...+Cn−1n−2+Cn−1n−1
C
n
1
+
C
n
3
+
.
.
.
+
C
n
n
=
C
n
−
1
0
+
C
n
−
1
1
+
C
n
−
1
2
+
C
n
−
1
3
+
.
.
.
+
C
n
−
1
n
−
1
+
C
n
−
1
n
C_n^1+C_n^3+...+C_n^n=C_{n-1}^0+C_{n-1}^1+C_{n-1}^2+C_{n-1}^3+...+C_{n-1}^{n-1}+C_{n-1}^n
Cn1+Cn3+...+Cnn=Cn−10+Cn−11+Cn−12+Cn−13+...+Cn−1n−1+Cn−1n
发现每一项都是相等的,第二个式子多出来的
C
n
−
1
n
=
0
C_{n-1}^n=0
Cn−1n=0,所以相等得证
又根据性质四
∑
i
=
0
n
C
n
i
=
2
n
\sum_{i=0}^nC_n^i=2^n
∑i=0nCni=2n,前两个式子相加刚好等于
∑
i
=
0
n
C
n
i
\sum_{i=0}^nC_n^i
∑i=0nCni,又相等,
/
2
/2
/2即为
2
n
−
1
2^{n-1}
2n−1
②假设
n
n
n为偶数
C
n
0
+
C
n
2
+
.
.
.
+
C
n
n
=
C
n
−
1
0
+
C
n
−
1
1
+
C
n
−
1
2
+
C
n
−
1
3
+
C
n
−
1
4
+
.
.
.
+
C
n
−
1
n
−
1
+
C
n
−
1
n
C_n^0+C_n^2+...+C_n^n=C_{n-1}^0+C_{n-1}^1+C_{n-1}^2+C_{n-1}^3+C_{n-1}^4+...+C_{n-1}^{n-1}+C_{n-1}^{n}
Cn0+Cn2+...+Cnn=Cn−10+Cn−11+Cn−12+Cn−13+Cn−14+...+Cn−1n−1+Cn−1n
C
n
1
+
C
n
3
+
.
.
.
+
C
n
n
−
1
=
C
n
−
1
0
+
C
n
−
1
1
+
C
n
−
1
2
+
C
n
−
1
3
+
.
.
.
+
C
n
−
1
n
−
2
+
C
n
−
1
n
−
1
C_n^1+C_n^3+...+C_n^{n-1}=C_{n-1}^0+C_{n-1}^1+C_{n-1}^2+C_{n-1}^3+...+C_{n-1}^{n-2}+C_{n-1}^{n-1}
Cn1+Cn3+...+Cnn−1=Cn−10+Cn−11+Cn−12+Cn−13+...+Cn−1n−2+Cn−1n−1
仍然两两对应相等,第一个式子多出来的
C
n
−
1
n
=
0
C_{n-1}^n=0
Cn−1n=0,后面的方法与奇数情况一样,不赘述
性质七
C n + m r = ∑ i = 0 m i n ( n , m , r ) { C n i ∗ C m r − i } C_{n+m}^r=\sum_{i=0}^{min(n,m,r)}\{C_n^i*C_m^{r-i}\} Cn+mr=i=0∑min(n,m,r){Cni∗Cmr−i}
C n + m n = C n + m m = ∑ i = 0 m i n ( n , m ) { C n i ∗ C m i } , ( r = n ∣ ∣ r = m ) C_{n+m}^n=C_{n+m}^m=\sum_{i=0}^{min(n,m)}\{C_n^i*C_m^i\},(r=n||r=m) Cn+mn=Cn+mm=i=0∑min(n,m){Cni∗Cmi},(r=n∣∣r=m)
证明:
用组合数意义理解
把
n
+
m
n+m
n+m个分成
n
n
n个一组,
m
m
m个一组,总共选
r
r
r个,相当于
n
n
n个中选
i
i
i个,
m
m
m个中选
r
−
i
r-i
r−i个
性质八
m ∗ C n m = n ∗ C n − 1 m − 1 m*C_n^m=n*C_{n-1}^{m-1} m∗Cnm=n∗Cn−1m−1
证明:
m
∗
C
n
m
=
m
∗
n
!
m
!
∗
(
n
−
m
)
!
=
n
∗
(
n
−
1
)
!
(
m
−
1
)
!
∗
(
n
−
m
)
=
n
∗
C
n
−
1
m
−
1
m*C_n^m=m*\frac{n!}{m!*(n-m)!}=n*\frac{(n-1)!}{(m-1)!*(n-m)}=n*C_{n-1}^{m-1}
m∗Cnm=m∗m!∗(n−m)!n!=n∗(m−1)!∗(n−m)(n−1)!=n∗Cn−1m−1
性质九
∑ i = 0 n { C n i ∗ i } = n ∗ 2 n − 1 \sum_{i=0}^n\{C_n^i*i\}=n*2^{n-1} i=0∑n{Cni∗i}=n∗2n−1
证明:
∑
i
=
0
n
{
C
n
i
∗
i
}
=
∑
i
=
1
n
{
n
!
i
!
∗
(
n
−
i
)
!
∗
i
}
=
∑
i
=
1
n
n
!
(
i
−
1
)
!
∗
(
n
−
i
)
!
\sum_{i=0}^n\{C_n^i*i\}=\sum_{i=1}^n\{\frac{n!}{i!*(n-i)!}*i\}=\sum_{i=1}^n\frac{n!}{(i-1)!*(n-i)!}
i=0∑n{Cni∗i}=i=1∑n{i!∗(n−i)!n!∗i}=i=1∑n(i−1)!∗(n−i)!n!
=
∑
i
=
1
n
{
n
∗
(
n
−
1
)
!
(
i
−
1
)
!
∗
(
n
−
i
)
!
}
=
n
∗
∑
i
=
1
n
C
n
−
1
i
−
1
=
n
∗
∑
i
=
0
n
−
1
C
n
−
1
i
=
n
∗
2
n
−
1
=\sum_{i=1}^n\{n*\frac{(n-1)!}{(i-1)!*(n-i)!}\}=n*\sum_{i=1}^nC_{n-1}^{i-1}=n*\sum_{i=0}^{n-1}C_{n-1}^i=n*2^{n-1}
=i=1∑n{n∗(i−1)!∗(n−i)!(n−1)!}=n∗i=1∑nCn−1i−1=n∗i=0∑n−1Cn−1i=n∗2n−1
由性质四可知, ∑ i = 0 n C n i = 2 n , ∑ i = 0 n − 1 C n − 1 i = 2 n − 1 \sum_{i=0}^nC_n^i=2^n,\sum_{i=0}^{n-1}C_{n-1}^i=2^{n-1} ∑i=0nCni=2n,∑i=0n−1Cn−1i=2n−1
性质十
∑ i = 0 n { C n i ∗ i 2 } = n ∗ ( n + 1 ) ∗ 2 n − 2 \sum_{i=0}^n\{C_n^i*i^2\}=n*(n+1)*2^{n-2} i=0∑n{Cni∗i2}=n∗(n+1)∗2n−2
证明:
利用性质九
∑
i
=
0
n
{
C
n
i
∗
i
2
}
=
∑
i
=
0
n
{
n
!
i
!
∗
(
n
−
i
)
!
∗
i
∗
(
i
−
1
+
1
)
}
\sum_{i=0}^n\{C_n^i*i^2\}=\sum_{i=0}^n\{\frac{n!}{i!*(n-i)!}*i*(i-1+1)\}
i=0∑n{Cni∗i2}=i=0∑n{i!∗(n−i)!n!∗i∗(i−1+1)}
=
∑
i
=
0
n
{
n
!
i
!
∗
(
n
−
i
)
!
∗
i
+
n
!
i
!
∗
(
n
−
i
)
!
∗
i
∗
(
i
−
1
)
}
=\sum_{i=0}^n\{\frac{n!}{i!*(n-i)!}*i+\frac{n!}{i!*(n-i)!}*i*(i-1)\}
=i=0∑n{i!∗(n−i)!n!∗i+i!∗(n−i)!n!∗i∗(i−1)}
=
∑
i
=
0
n
{
C
n
i
∗
i
}
+
∑
i
=
1
n
{
n
!
(
i
−
1
)
!
∗
(
n
−
i
)
!
∗
(
i
−
1
)
}
=\sum_{i=0}^n\{C_n^i*i\}+\sum_{i=1}^n\{\frac{n!}{(i-1)!*(n-i)!}*(i-1)\}
=i=0∑n{Cni∗i}+i=1∑n{(i−1)!∗(n−i)!n!∗(i−1)}
=
n
∗
2
n
−
1
+
n
∗
∑
i
=
1
n
{
(
n
−
1
)
!
(
i
−
1
)
!
∗
(
n
−
i
)
!
∗
(
i
−
1
)
}
=n*2^{n-1}+n*\sum_{i=1}^n\{\frac{(n-1)!}{(i-1)!*(n-i)!}*(i-1)\}
=n∗2n−1+n∗i=1∑n{(i−1)!∗(n−i)!(n−1)!∗(i−1)}
=
n
∗
2
n
−
1
+
n
∗
∑
i
=
1
n
{
C
n
−
1
i
−
1
∗
(
i
−
1
)
}
=
n
∗
2
n
−
1
+
n
∗
∑
i
=
0
n
−
1
{
C
n
−
1
i
∗
i
}
=n*2^{n-1}+n*\sum_{i=1}^n\{C_{n-1}^{i-1}*(i-1)\}=n*2^{n-1}+n*\sum_{i=0}^{n-1}\{C_{n-1}^i*i\}
=n∗2n−1+n∗i=1∑n{Cn−1i−1∗(i−1)}=n∗2n−1+n∗i=0∑n−1{Cn−1i∗i}
=
n
∗
2
n
−
1
+
n
∗
(
n
−
1
)
∗
2
n
−
2
=
(
n
∗
2
+
n
∗
(
n
−
1
)
)
∗
2
n
−
2
=
n
∗
(
n
+
1
)
∗
2
n
−
2
=n*2^{n-1}+n*(n-1)*2^{n-2}=(n*2+n*(n-1))*2^{n-2}=n*(n+1)*2^{n-2}
=n∗2n−1+n∗(n−1)∗2n−2=(n∗2+n∗(n−1))∗2n−2=n∗(n+1)∗2n−2
性质十一
∑ i = 0 n { ( C n i ) 2 } = C 2 ∗ n n \sum_{i=0}^n\{(C_n^i)^2\}=C_{2*n}^n i=0∑n{(Cni)2}=C2∗nn
证明:
根据性质七易证
∑ i = 0 n { ( C n i ) 2 } = ∑ i = 0 n { C n i ∗ C n n − i } = C n + n n = C 2 ∗ n n \sum_{i=0}^n\{(C_n^i)^2\}=\sum_{i=0}^n\{C_n^i*C_n^{n-i}\}=C_{n+n}^n=C_{2*n}^n i=0∑n{(Cni)2}=i=0∑n{Cni∗Cnn−i}=Cn+nn=C2∗nn
错排数
把 n n n个分别写有 1 − n 1-n 1−n的球放进 n n n个固定的分别写有 1 − n 1-n 1−n的盒子里,每个盒子里正好有一个球且盒子上的数字与盒中球的数字都不相同的方案数,记作 D ( n ) D(n) D(n)
递推式:
D ( n ) = ( n − 1 ) ∗ ( D ( n − 1 ) + D ( n − 2 ) ) D ( 1 ) = 0 , D ( 2 ) = 1 D(n)=(n-1)*(D(n-1)+D(n-2))\ \ \ \ \ D(1)=0,D(2)=1 D(n)=(n−1)∗(D(n−1)+D(n−2)) D(1)=0,D(2)=1
证明:
第一个盒子有
n
−
1
n-1
n−1种球可以放(除了一号球),假设第一个盒子放的
i
i
i号球,则有两种情况
①恰好第
i
i
i个盒子放的球就是一号球,则剩下的
n
−
2
n-2
n−2个球继续错排,方案数为
D
(
n
−
2
)
D(n-2)
D(n−2)
②第
i
i
i个盒子放的不是一号球,此时形成了一条新的限制:一号球不能放进
i
i
i号盒
除去第一个盒子和
i
i
i号球的剩下
n
−
1
n-1
n−1个球和
n
−
1
n-1
n−1个盒子,继续错排的方案数为
D
(
n
−
1
)
D(n-1)
D(n−1)