十进制转R进制数
十进制数是组成以10为基础的数字系统,有0,1,2,3, 4, 5, 6, 7, 8, 9十个基本数字组成。十进制,英文名称为Decimal System,来源于希腊文Decem,意为十。十进制计数是由印度教教徒在1500年前发明的,由阿拉伯人传承至11世纪。
所有的数字都用10个基本的符号表示,满十进一,同时同一个符号在不同位置上所表示的数值不同,符号的位置非常重要。基本符号是0到9十个数字。要表示这十个数的10倍,就将这些数字右移一位,用0补上空位,即10,20,30,…,90;要表示这十个数的10倍,就继续左移数字的位置,即100,200,300,…。要表示一个数的1/10,就右移这个数的位置,需要时就0补上空位:1/10位0.1,1/100为0.01,1/1000为0.001。
-
十进制数转二进制数
问:十进制数156,转换为二进制数是多少?
十进制数转其他进制,使用短除法:156 / 2 --------0 78/2 --------0 39/2 --------1 19/2 --------1 9/2 --------1 4/2--------0 2/2--------0 1
当最后被除数小于除数时,结束短除,其结果由下往上,将余数写到一起,10011100
-
十进制数转八进制数
问:十进制数156,转换为八进制数是多少?
十进制数转其他进制,使用短除法:156/8 --------4 19/8 --------3
2
当最后的结果小于8时,结束短除。其结果为234
3. 十进制数转十六进制数
问:十进制数156,转换为十六进制数是多少?
十进制数转其他进制,使用短除法:
156/16 --------12
9
十六进制数在超过9时,分别用字母A,B,C,D,E,F表示10,11,12,13,14,15,即上面的结果为9C
R进制转十进制数
八进制,Octal,缩写OCT或O,一种以8为基数的计数法,采用0,1,2,3,4,5,6,7八个数字,逢八进1。一些编程语言中常常以数字0开始表明该数字是八进制。八进制的数和二进制数可以按位对应(八进制一位对应二进制三位),因此常应用在计算机语言中。
-
八进制数转十进制数
问:八进制数156,转换为十进制数是多少?
R进制转十进制数,以按权展开法,权表示R,即R^k1 * 8^2 + 5 * 8^1 + 6 * 8^0 = 64 + 40 + 6 = 110
其结果为110
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”。
二进制数(binaries)是逢2进位的进位制,0、1是基本算符;计算机运算基础采用二进制。
- 二进制数转十进制数
问:二进制数101101,转换为十进制数是多少?
R进制转十进制数,以按权展开法,权表示R.
1 * 2^5 + 1 * 2^3 + 1 * 2^2 + 1 * 2^0 = 45
0乘任何数为0 ,所以省去了4,1两位计算
其结果为45
十六进制(简写为hex或下标16)在数学中是一种逢16进1的进位制。一般用数字0到9和字母A到F(或a-f表示,其中:A-F表示10~15,这些称作十六进制数字。
- 十六进制数转十进制数
问:十六进制数2E3F,转换为十进制数是多少?
2 * 16^3 + 14 * 16^2 + 3 * 16^1 + 15 * 16^0 = 11839
R进制数转R进制数
-
二进制数转八进制数
问:二进制数10110,转为八进制数是多少?
二进制数每三位对应一位八进制数。----- 111 = 7010 110 0*2^2 + 1*2^1 + 0 = 2 1*2^2 + 1*2^1 + 0 = 6
计算结果为o26或者(26)8
-
二进制数转十六进制数
问:二进制数10110,转为十六进制数是多少?
二进制数每四位对应一位十六进制数。--------1111 = 15
0001 0110
1 12^2 + 12 ^ 1 = 6
计算结果为hex26或者(16)16
3. 八进制数转二进制数
问:八进制数26,转为二进制数是多少?
2 -------------010
6--------------110
计算结果为 010110
4. 八进制数转十六进制数
问:八进制数26,转为十六进制数是多少?
2*8 + 6 = 22 八进制数转十进制数为22
十进制数转十六进制 数: 22/16 --------------1 ------6
其结果为16
总结
进制转换,可以将任何进制先转换为10进制,再转换为其他相应的进制;或者可以将任何进制先转换为2进制,在转换为相应的进制数。
1、任何进制转10进制,可以使用按权展开法
2、10进制转任何进制,可以使用短除法
八进制转二进制时,一位八进制数表示三位的二进制数,例如 275就可以按以下算法:
2/2 -------------------0
1 结果为010
7/2 --------------------1
3 -----------------1
1 结果为111
5/2 -------------------1
2--------------------0
1 结果为101
最终结果:010 111 101
十六进制数转为二进制时,一位十六进制数 表示四位二进制数,例如 EF8A就可以按照以下算法:
E -- 14 / 2 -----------------0
7/2-----------------1
3/2------------------1
1 结果为1110
F--15 结果为1111
8/2 ------------0
4/2---------------0
2/2----------------0
1 结果为1000
A--10/2-----------0
5/2-------------1
2/2------------------0
1 结果为1010
最终结果:1110 1111 1000 1010