接下来我们进一步解释LGBM的sklearn API中各评估器中的超参数及使用方法。
在LGBM的sklearn API中,总共包含四个模型类(也就是四个评估器),分别是lightgbm.LGBMModel、LGBMClassifier 和 LGBMRegressor 以及LGBMRanker:
LGBMModel
LGBMModel
是 LightGBM 的基础模型类,它提供了所有 LightGBM 模型的通用接口。虽然它本身不是为特定任务设计的,但它包含了所有基本的训练和预测方法。
主要方法:
fit(X, y, sample_weight=None, init_score=None, eval_set=None, eval_names=None, eval_sample_weight=None, eval_class_weight=None, eval_init_score=None, eval_metric=None, early_stopping_rounds=None, verbose=True, feature_name='auto', categorical_feature='auto', callbacks=None, init_model=None)
predict(X, raw_score=False, start_iteration=0, num_iteration=None, pred_leaf=False, pred_contrib=False, **kwargs)
feature_importances_
:返回特征的重要性评分。
LGBMClassifier
LGBMClassifier
是用于分类任务的模型类,适用于二分类和多分类问题。
主要超参数:
boosting_type='gbdt'
:提升类型,可选值有 'gbdt' (默认), 'dart', 'goss', 'rf'。num_leaves=31
:每棵树的最大叶子数。max_depth=-1
:树的最大深度,负值表示不限制。learning_rate=0.1
:学习率,控制每次迭代的学习步长。n_estimators=100
:提升树的数量。subsample_for_bin=200000
:构造直方图时使用的样本数量。min_split_gain=0.0
:分裂节点所需的最小增益。min_child_weight=0.001
:叶子节点的最小权重。min_child_samples=20
:叶子节点的最小样本数。subsample=1.0
:每棵树训练时使用的样本比例。colsample_bytree=1.0
:每棵树训练时使用的特征比例。reg_alpha=0.0
:L1 正则化系数。reg_lambda=0.0
:L2 正则化系数。random_state=None
:随机种子,用于复现结果。n_jobs=-1
:并行任务数,-1 表示使用所有可用的 CPU 核心。silent=True
:是否静默模式,不显示训练过程中的信息。importance_type='split'
:特征重要性的计算方式,可选值有 'split' 和 'gain'。
示例代码:
from lightgbm import LGBMClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
# 加载数据集
data = loa