在Python中调用狄拉克gamma矩阵

文章目录

狄拉克矩阵

狄拉克矩阵是狄拉克在构建狄拉克方程时引入的矩阵,一般用 γ μ \gamma^\mu γμ来表示,其展开式为

γ μ = ( γ 0 , γ ⃗ ) = ( β , α ⃗ ) = ( γ 0 , γ 1 , γ 2 , γ 3 ) \gamma^\mu=(\gamma^0, \vec\gamma)=(\beta, \vec\alpha)=(\gamma^0,\gamma^1,\gamma^2,\gamma^3) γμ=(γ0,γ )=(β,α )=(γ0,γ1,γ2,γ3)

相应地狄拉克方程表示为

( i γ μ ∂ μ − m ) ψ = 0 (i\gamma^\mu\partial^\mu-m)\psi=0 (iγμμm)ψ=0

其展开形式为

i ℏ ∂ ψ ∂ t = ( ℏ c i α ⃗ ⋅ ∇ + β m c 2 ) ψ i\hbar\frac{\partial\psi}{\partial t}=(\frac{\hbar c}{i}\vec\alpha\cdot\nabla+\beta mc^2)\psi itψ=(icα +βmc2)ψ

此外,还定义了 γ 5 = i γ 0 γ 1 γ 2 γ 3 \gamma^5=i\gamma^0\gamma^1\gamma^2\gamma^3 γ5=iγ0γ1γ2γ3

mgamma

在sympy中提供了mgamma函数,用以生成狄拉克矩阵

from sympy import print_latex
from sympy.physics.matrices import mgamma

for i in range(4):
    print_latex(mgamma(i))

由此得到狄拉克矩阵的具体形式如下

γ 0 = [ 1 0 0 0 0 1 0 0 0 0 − 1 0 0 0 0 − 1 ] γ 1 = [ 0 0 0 1 0 0 1 0 0 − 1 0 0 − 1 0 0 0 ] γ 2 = [ 0 0 0 − i 0 0 i 0 0 i 0 0 − i 0 0 0 ] γ 3 = [ 0 0 1 0 0 0 0 − 1 − 1 0 0 0 0 1 0 0 ] \gamma^0=\left[\begin{matrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & -1 & 0\\0 & 0 & 0 & -1\end{matrix}\right]\\ \gamma^1=\left[\begin{matrix}0 & 0 & 0 & 1\\0 & 0 & 1 & 0\\0 & -1 & 0 & 0\\-1 & 0 & 0 & 0\end{matrix}\right]\\ \gamma^2=\left[\begin{matrix}0 & 0 & 0 & - i\\0 & 0 & i & 0\\0 & i & 0 & 0\\- i & 0 & 0 & 0\end{matrix}\right]\\ \gamma^3=\left[\begin{matrix}0 & 0 & 1 & 0\\0 & 0 & 0 & -1\\-1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{matrix}\right] γ0= 1000010000100001 γ1= 0001001001001000 γ2= 000i00i00i00i000 γ3= 0010000110000100

print_latex(mgamma(5))     
\left[\begin{matrix}0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{matrix}\right]

γ 5 = [ 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 ] \gamma^5=\left[\begin{matrix}0 & 0 & 1 & 0\\0 & 0 & 0 & 1\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{matrix}\right] γ5= 0010000110000100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值