Python模拟艾里光束:光可以不沿直线传播

Airy光束

在光学领域,傍轴近似下光束传输遵循方程

i ∂ ϕ ∂ z + 1 z a ∂ 2 ϕ ∂ x 2 = 0 i\frac{\partial\phi}{\partial z}+\frac{1}{z}\frac{a\partial^2\phi}{\partial x^2}=0 izϕ+z1x2a2ϕ=0

其中 k = 2 π n λ k=\frac{2\pi n}{\lambda} k=λ2πn,为波数。

ξ = x x 0 , η = z k x 0 2 \xi=\frac{x}{x_0}, \eta=\frac{z}{kx_0^2} ξ=x0x,η=kx02z,则上式变为无量纲的形式

i ∂ φ ∂ ξ + 1 2 ∂ 2 φ ∂ η 2 = 0 i\frac{\partial\varphi}{\partial\xi}+\frac{1}{2}\frac{\partial^2\varphi}{\partial\eta^2}=0 iξφ+21η22φ=0

其中, φ \varphi φ为电场包络。

φ ( ξ = 0 , η ) = A i ( η ) \varphi(\xi=0,\eta)=Ai(\eta) φ(ξ=0,η)=Ai(η)

根据艾里函数的定义,则 φ \varphi φ η \eta η之间存在关系 ∂ 2 φ ∂ η 2 = η φ \frac{\partial^2\varphi}{\partial\eta^2}=\eta\varphi η22φ=ηφ,将其带入无量纲表达式,可得到

i ∂ φ ∂ ξ + η φ = 0 i\frac{\partial\varphi}{\partial\xi}+\eta\varphi=0 iξφ+ηφ=0

最后解得

φ ( ξ , η ) = A i ( η − ( ξ 2 2 ) ) exp ⁡ [ i ( η ξ 2 − ξ 3 12 ) ] \varphi(\xi,\eta)=Ai(\eta-(\frac{\xi}{2}^2))\exp[i(\frac{\eta\xi}{2}-\frac{\xi^3}{12})] φ(ξ,η)=Ai(η(2ξ2))exp[i(2ηξ12ξ3)]

据此,对其取模,即可画出艾里光束在 x , z x,z x,z方向的能量分布。

import scipy.special as sc
import numpy as np
import matplotlib.pyplot as plt

xi, eta = np.indices([200,500])/20
Ai, Aip, Bi, Bip = sc.airy(eta-(xi/2)**2)
plt.imshow(np.abs(Ai), cmap='jet')
plt.colorbar()
plt.show()

得图如下,水平方向为传播方向,即 η \eta η方向。这个图很有意思,Airy光束能量峰值的位置,并不是一条直线,换言之,Airy光束竟然不沿直线传播,太离奇了。

在这里插入图片描述

有限能量Airy光束

如果对初始位置处的光强求积分,可以发现得到的结果是发散的,即理想Airy光束的能量是无穷大,这显然太理想了,一点都不现实。现实中存在的Airy光束,需要添加一个衰减因子 α \alpha α,从而初始位置的Airy光束,其分布为

φ ( 0 , η ) = A i ( η ) exp ⁡ ( α η ) \varphi(0,\eta)=Ai(\eta)\exp(\alpha\eta) φ(0,η)=Ai(η)exp(αη)

从而一维有限能量Airy光束的波包为

φ ( ξ , η ) = A i ( η − ( ξ 2 2 ) + i α ξ ) exp ⁡ [ ( α η − α ξ 2 2 ) + i ( η ξ 2 + α 3 ξ 2 − ξ 3 12 ) ] \varphi(\xi,\eta)=Ai(\eta-(\frac{\xi}{2}^2)+i\alpha\xi)\exp[(\alpha\eta-\frac{\alpha\xi^2}{2})+i(\frac{\eta\xi}{2}+\frac{\alpha^3\xi}{2}-\frac{\xi^3}{12})] φ(ξ,η)=Ai(η(2ξ2)+iαξ)exp[(αη2αξ2)+i(2ηξ+2α3ξ12ξ3)]

α = 0.02 \alpha=0.02 α=0.02,再绘制一下其光场分布

Ai, Aip, Bi, Bip = sc.airy(eta-(xi/2)**2+0.02j*xi)
plt.imshow(np.abs(Ai), cmap='jet')
plt.colorbar()
plt.show()

结果如下

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值