参数方法,假定概率分布,只来估计少量参数。
半参数方法,对数据分组,每组采用一种概率分布的假设,最后使用混合概率分布。
非参数方法,不需要知道数据的概率分布,只需要假设:相似的输入具有相似的输出。因为我们一般都认为世界的变化时平稳、量变到质变的,因此无论是密度、判别式还是回归函数都应当缓慢地变化。在这样的非参数估计(non-paramitric estimation)中,局部实例对于密度的影响就显得颇为重要,而较远的实例影响则较小。
非参数方法主要有:
--非参数密度估计
--直方图形式的估计
--核估计
--k-最近邻估计