Class-Incremental Domain Adaptation

 

类增长域自适应


摘要:

引入了CIDA范例,现存的DA方法能解决domain-shift问题但是不使用在学习目标域中新颖的类别,CI方法在源训练数据缺失的情况下可以学习新的类别,但是不能解决无监督的domain-shift问题,本文就是解决CIDA问题,基于原型网络可以识别shared-class和novel class(one-shot)

 

Introduction:

  1. 现目前深度学习的弱点在于在源域和目标域存在domain-shift的情况下,系统的性能会大大降低,同时面对目标域存在新颖类别时模型会强制性的分配已学习类别的标签,如果采用微调的学习方式会需要目标域中大量已标记的样本,这是不实际的。同时在适应的过程中,应该不需要对源域样本进行在训练,因此如何有效的模型升级到目标域上是很重要的挑战。
  2. UDA:UDA方法就是需要在源域和目标域共存的情况下进行适应工作(源域是标记的,目标域是无标记的),源域和目标域共享同一个标签空间

Openset-DA:要么目标域的标签空间包含源域的标签空间,要么两者交叉,如果源域的标签空间包含目标域的标签空间则称之为partial DA

Universal DA:无法知道目标域的标签空间

缺点:同时接收源域和目标域数据,其次把目标域中特有的标签空间识别成unkown

CI缺点:

不需要接收到源域数据集的方法称之为source-free

Introduction 总结:

文章中的参数设置:

本文方法:

说白了负迁移就是在目标域中私有类别样本上共享特征提取器中无法进行适应

 

方法解读:

 

文章的目标:

主要理解的是类增长更新,在目标私有类中给定每个类别为1个样本,是指在训练好模型之后,要识别添加的类别,只需要1个样本加入就可以识别的意思吗?

 

1.源模型训练:

并不是简单的训练源数据模型就可以,在训练过程中我们的目标是抑制过度自信的类预测导致的领域和类别偏差,我们增加了非分布(OOD)检测的能力。这一步的灵感来自于在有限数据体系中具有更简单的归纳偏差的原型网络,然后源模型就和原型一起作为元数据,去执行无源升级(注意之前提到的在升级网络时不需要源数据的参与称之为无源)

2.类增长DA

在这个步骤中我们的目的是将共享类中的目标样本潜在空间中的高源密度区域对齐,我们必须在保留语义粒度的同时在潜在空间中容纳新的目标类,我们通过学习一个特定于目标的潜在空间来实现这两个目标,在这个潜在空间中,我们获得了被称为引导(guides的可学习中心,用来逐步引导目标特征进入单独的簇。

接下来主要阐述上述两个阶段的方法实现CIDA:

 

1.简单的适应交叉熵来进行源域模型的学习是不可取的,需要解决的是过度自信预测无源适应的问题,因此使用高斯原型来解决:

 

高斯原型是潜在空间U中为每个类定义的多元高斯先验

上述是定义的类分离目标函数,我们明确地加强源特征以获得对这些类特定高斯先验的更高亲和力(我的理解是公式3的损失有利于类别之间能够更好的分离,相当于增大类间距离

我们来思考一下,就算定义了类分离函数,但是不能确保严格的决策边界,对于特定目标域的类别样本会产生误判,因此利用高斯原型去选择出负样本(也就是target-specific category samples),然后执行交叉熵损失

让我们来总结一下源模型的训练过程,就是直接使用交叉熵损失时,对于target-specific samples会以高度自信预测shared categories,这是不可行的,因此我们在其中添加高斯原型,通过高斯原型来找出里面的负样本,构建总的样本交叉熵和负样本的交叉熵和损失也就是Ls2,对了还有Ls1损失,这是类分离目标函数,通过Ls1和Ls2损失。对负样本和shared categories samples都能产生严格的决策边界。

负样本怎么找的?:

最后是优化过程:

 

2.

(a)Learning target features:UDA是要学习domain-agnostic featuresCIDA中要学习target specific latent space(V),初始化ft使用fsgs固定参数,gt学习target-private categories

(b)Domain projection:

 

(c)Semantic alignment using guides:我们的目标是将来自共享类Cs的目标样本与高源密度区域(代理源样本)保持一致,并将目标私有样本分散到低源密度区域(负样本区域)

 

主要理解的是类增长更新,在目标私有类中给定每个类别为1个样本,是指在训练好模型之后,要识别添加的类别,只需要1个样本加入就可以识别的意思吗?

1shot target-private sample 的guides,对于共享类别的guides用

 

 

 

 

La1目标域分离函数,La2指导自信度目标域样本朝向对应的guides

 

 

 

 

细节描述:

产生负样本

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值