文章目录
GraphEmbedding系列总结
Embedding is all you need
Embedding 必须是深度学习中的“基本操作”。不论是 NLP(Normal Language Processing,自然语言处理),搜索排序,还是推荐系统,或者 CTR (Click-Through-Rate,点击通过率)模型,Embedding 都扮演着不可或缺的角色
深度学习中,Embedding 特指用一个低维度向量表示一个实体,可以是一个词(Word2Vec),可以是一个物品(Item2Vec),亦或者网络关系中的节点(Graph Embedding)
Graph Embedding在深度学习推荐系统中广泛使用,从 Word2Vec 到 DeepWalk,从 LINE 到 Node2Vec。本文系列总结目前主流的Graph Embedding算法
具体演化图如下:

本文总结了Graph Embedding的主要算法,包括Word2Vec、Item2Vec、DeepWalk、Node2Vec、EGES和LINE。这些算法在深度学习推荐系统中广泛应用,通过将图中的节点映射到低维向量空间,捕捉节点间的结构和语义关系。其中,Node2Vec通过调整随机游走策略平衡同质性和结构性,而LINE则通过一阶和二阶相似度保留局部和全局结构信息。此外,EGES引入补充信息解决冷启动问题。
订阅专栏 解锁全文
3171

被折叠的 条评论
为什么被折叠?



