- 博客(36)
- 收藏
- 关注
转载 推导勒让德多项式
推导Legendre Polynomials(勒让德多项式)问题:证明Legendre Polylnomails(勒让德多项式)是Legendre Differential Equation(勒让德微分方程)的解勒让德微分方程:(1−x2)d2ydx2−2xdydx+k(k+1)y=0勒让德微分方程:(1-x^2) \frac{d^2 y}{dx^2}-2x\frac{d y}{dx} + k(k+1)y=0勒让德微分方程:(1−x2)dx2d2y−2xdxdy+k(k+1)y=0有解勒让
2022-05-17 17:27:09 3554
原创 使用synergy在多设备(win/linux)中共用键鼠
以linux为主机(server)、win10为从机(client)为例:注意:主机synergy版本应高于从机1 在win10配置clientsynergy下载链接勾选client,填写服务端IP(linux电脑的IP)2 在ubuntu18配置server# 安装synergysudo apt install synergy#注意:synergy可能需要一些依赖项 参考[源码](https://github.com/symless/synergy-core/wiki/Compil
2021-09-19 16:12:14 270
原创 ubuntu新系统环境配置集锦
文章目录1. 安装ros(参照[官网](http://wiki.ros.org/ROS/Installation))2. 查看cmake、gcc版本3. 安装qt1. 安装ros(参照官网)PS:需要在/etc/hosts中添加github相关ip2. 查看cmake、gcc版本cmake --versiongcc -vqmake -v 3. 安装qt在官网选择版本sudo chmod a+x qt*.run./qt*.run使用qtchooser配置sudo apt i
2021-01-17 17:08:15 494
原创 mac上使用vsCode写latex使用skim跳转
参考:Mac上使用VSCode编辑Latex+Skim跳转预览要点:1. 编译latex的时候可以使用多种方式,比如xelatex、biblatex、pdflatex等,并且不同顺序也会产生不同的效果,比如如何识别中文2. command + option + B 编译3. 在skim中command + shift + 鼠标左键跳转至vsCode遗留问题:1. 无法编译中文2. 从vsCode无法跳转到skim...
2020-12-20 23:37:08 798
原创 椭球曲面计算
椭球面方程及某一点的法向量,椭球半径r=(asinφcosθ,bsinφsinθ,ccosθ)的某一点的法向量椭球面方2113程:x2a2+y2b2+z2c2=1\frac{x^2}{a^2} + \frac{y^2}{b^2}+\frac{z^2}{c^2}=1a2x2+b2y2+c2z2=1(a>0, b>0, c>0)设椭球面上有一点P(x₀, y₀, z₀)椭球面在P点处的切平面方程为x∗x₀a²+y∗y₀b²+z∗z₀c²=1\frac{x*x₀}{a²} + \fr
2020-11-19 17:26:18 7766
转载 SSH文件拷贝
1、上传本地文件到服务器 scp /path/filename username@servername:/path/例如scp /var/www/test.php root@192.168.0.101:/var/www/ 把本机/var/www/目录下的test.php文件上传到192.168.0.101这台服务器上的/var/www/目录中 2、从服务器上下载文件 下载文件我们经常使用wget,但是如果没有http服务,如何从服务器上下载文件呢? scp usernam
2020-11-19 11:59:16 4502
原创 SLAM系统笔记
文章目录2020-IROS-LIO-SAM2018-IROS-LeGO-LOAMSLAM流程2020-IROS-LIO-SAM2018-IROS-LeGO-LOAMSLAM流程
2020-10-03 09:56:00 163
转载 四元数矩阵与 so(3) 左右雅可比
我们知道,单位四元数 q 和 so(3) 向量 (即 rotation vector)的对应关系为: , in which 当 很小时,可以近似表达为: 四元数小量和李代数小量有很简单的对应关系,所以在使用四元数的优化问题中,往往也取 小量作为更新量,例如 OKVIS [1]。具体到优化过程中,使用李群李代数(如预积分论文 [2])和使用四元数之间还是有区别的。使用李群李代数,在 residual 推导时会用到 so3 的左雅可比或右雅可比;使用四元数,会用到四元数矩阵(或共轭四元数矩阵)。不
2020-09-29 15:00:08 2403
原创 多传感器标定
文章目录Kalibr 标定双目内外参数以及 IMU 外参数IMU标定LiDAR-Camera Calibration using 3D-3D Point correspondencesLidar-IMU标定Kalibr 标定双目内外参数以及 IMU 外参数原文链接:https://blog.csdn.net/heyijia0327/article/details/83583360ETH / kalibr工具IMU标定误差的估计LiDAR-Camera Calibration using 3D-3
2020-09-26 21:36:59 434
原创 Docker自定义环境
安装docker,参照Ubuntu 16.04安装docker运行已有镜像(如不存在自动从dockerhub中下载)sudo docker pull IMAGE:TAG运行镜像,建立一个该镜像的容器,类似类与实例的关系sudo docker run IMAGE:TAG# -p 设置端口sudo docker run -it -p 5900:5900 IMAGE:TAG# -v 挂载宿主数据(文件/文件夹)sudo docker run -it -v /home/source:/ta.
2020-07-19 20:35:01 316
转载 Ubuntu 16.04安装docker
因需要安装opendronemap,而这个依赖于docker,所以记录了一下安装docker的步骤,比较简单.通过apt的docker官方源安装最新的Docker CE(Community Edition),即Docker社区版,是开发人员和小型团队的理想选择。开始安装由于apt官方库里的docker版本可能比较旧,所以先卸载可能存...
2020-07-19 14:43:46 139
原创 李宏毅DL课程学习-Logistic Regression
本文所有图片出自李老师课程PPT针对之前的分类问题,我们通过计算所有样本的后验概率来评价所得模型的好坏 L(w,b)L(w, b)L(w,b)所以我们最大化来获得最佳的 w∗,b∗w^*, b^*w∗,b∗(概率问题一般可以转换为log函数进行求解)通过引入 y^i\hat y^iy^i 变量,我们可以将公式抽象成求和的形式:从而我们可以得到分类的问题的 LossFunctionLoss FunctionLossFunction 形式为概率的交叉熵。通过求偏导数可以获得参数更新:对
2020-05-28 16:56:06 241
原创 李宏毅DL课程学习-Classification
本文所有图片出自李老师课程PPT分类问题主要就是输入某个变量,这个变量可以含有很多维特征,通过回归输出变量的整个后验分布,从而可以获得该变量的类别。首先,针对最简单的二分类问题,有为了求得 P(x∣C1),P(x∣C2)P(x|C_1), P(x|C_2)P(x∣C1),P(x∣C2) 我们需要假定两种类别数据的分布规律遵循一种先验的分布,比如Gaussian,利用 MLEMLEMLE 的方法可以估计出分布的参数(或者利用 ParzenWindowParzenWindowParzenWind.
2020-05-28 16:17:49 245
转载 常见核函数
这篇博文开始的例子就很好地揭示了核函数的简单原理,写得很好!原地址:https://blog.csdn.net/zkq_1986/article/details/524482381 核函数K(kernel function)定义核函数K(kernel function)就是指K(x, y) = <...
2020-05-25 09:27:39 3408
转载 python绘图
%matplotlib inlinePopulating the interactive namespace from numpy and matplotlib import seaborn as snsimport numpy as npfrom numpy.random import randnimport matplotlib as mplimport matplotlib.pyplot as pltfrom scipy import stats # style set 这里只是一些简单的..
2020-05-25 08:55:33 623
转载 拉格朗日乘数法Lagrange Multipier
前言: 通过拉格朗日乘数法可以将原来带约束的优化问题转换为无约束的优化问题。阅读目录1. 拉格朗日乘数法的基本思想2. 数学实例3. 拉格朗日乘数法的基本形态4. 拉格朗日乘数法与KKT条件 拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程。新学到的知识一定要立刻记录下来,希望对各位博友有些许帮助。回到顶部1. 拉格朗日乘数法的基本思想 作为一种优化算
2020-05-24 09:41:44 1276 1
原创 Eigen矩阵运算库使用
文章目录lpl_plp norm/p范数计算colwise()/rowwise()array()blocklpl_plp norm/p范数计算L2范数 squareNorm(),等价于计算vector的自身点积,norm()返回squareNorm的开方根。这些操作应用于matrix,norm() 会返回Frobenius或Hilbert-Schmidt范数。如果你想使用其他Lp范数,可以使用lpNorm< p >()方法。p可以取Infinity,表示L∞范数。int main()
2020-05-22 08:22:57 2526
转载 QR分解之GivensRotation法
在SLAM过程中,通常最终需要求解一个最小二乘问题,Ax=b Ax = b Ax=b 其中 AAA 非常庞大并且稀疏,可以利用舒尔布或者 CholeskyCholeskyCholesky 分解,从而提高求解的效率。求解这个问题有很多中方法,如 QRQRQR 分解, LLTLLTLLT 分解等等。本文主要介绍使用Givens Rotation解这个问题。很多SLAM算法中都有使用Givens Rotation,比如MSCKF,iSAM等\// Note: i is col, j is row.v
2020-05-21 20:20:51 2768 2
原创 LaTex笔记:常用转换
打开一个Markdown的在线编辑器,例如 https://stackedit.io/editor , 在编辑的地方敲入上边的LaTeX代码,如下图所示操作:操作完成后拷贝显示出来的MathML代码(如下图): 打开Word,在你要插入公式的位置,单击鼠标右键,然后点击下图中红框所示位置: 效果展示展示效果如下: 下面演示latex公式编写: 原文: Gamma公式展示 Γ(n)=(n−1)!∀n∈N\Gamma(
2020-05-21 15:14:32 1821
原创 概率分布知识点
Gamma分布中2参数为形状参数k(shape parameter)和尺度参数θ(scale parameter)当k=1时的gamma分布是指数分布。用生成函数的方法可以证明具有相同尺度参数θ的两个独立gamma分布之和仍为gamma分布,形状参数k=k1+k2k=n(正整数)时的gamma分布可以看作n个独立的k=1的gamma分布(即指数分布)之和,按照中心极限定理(CLT),独立同分布随机变量之和趋于正态分布,当k趋向于较大数值时,分布近似于正态分布。参考 :【卡方分布,t分布和F分布】【
2020-05-20 20:15:47 938
原创 分位数回归与QQ图
分位数(Quantile),亦称分位点,是指将一个随机变量的概率分布范围分为几个等份的数值点,常用的有中位数(即二分位数)、四分位数、百分位数等。分位数回归则可以理解成加权的最小二乘估计,一般的最小二乘目标是估计参数的期望(均值),而分位数回归则是直接估计出分位数的值。分位数回归提出的原因,就是因为不希望仅仅是研究参数的期望,而是希望能探索参数的完整分布状况,或者说可能在某些情况下我们更希望了解参数的某个分位数。参见博客QQ图也就是所谓的分位数-分位数图(Quantile-Quantile),主要
2020-05-18 20:25:45 1494
转载 自动驾驶点云处理文章(转自github)
Lidar Point clound processing for Autonomous DrivingA list of references on lidar point cloud processing for autonomous drivingLiDAR Pointcloud Clustering/Semantic SegmentationTasks : Road/Ground extraction, plane extraction, Semantic segmentation, open
2020-05-17 22:52:04 2265 3
原创 ROS使用笔记
1.提取bag中固定topic或者固定时间段数据rosbag filter my.bag out.bag "topic == '/tf' or topic == '/tf2'"rosbag filter my.bag out.bag "t.to_sec() >= 123444.77 and t.to_sec() <= 234545.88"2. 提取pcd数据rosrun pcl_ros bag_to_pcd <input_file.bag> <topic> &l
2020-05-14 21:13:47 936
转载 Parzen window概率密度估计
主要参考资料:http://www.personal.rdg.ac.uk/~sis01xh/teaching/CY2D2/Pattern2.pdf在数学上一个连续概率密度函数p(x)的需满足以下的条件:1、x在a和b之间的概率为:2、对所有的x,p(x)非负3、p(x)的积分值为1最经常使用的概率密度函数就是高斯函数(正态分布)将一维的情况扩展到多维,现在的...
2020-04-24 21:42:31 1423
转载 gtsam使用总结(转)
步骤:1.构建问题(因子图)建立因子图模型gtsam::NonlinearFactorGraph::shared_ptr graph(new gtsam::NonlinearFactorGraph);初始化值gtsam::Values::shared_ptr initial ( new gtsam::Values );向initial中加入顶点(初始化顶点值)(gtsam中的P...
2020-04-21 20:46:50 7734
原创 glog使用-查看LOG
使用glog可以帮助输出调试信息int main(int argc, char* argv[]){ string home = "./log/"; //要先创建此目录,否则运行报错. google::InitGoogleLogging(argv[0]); string info_log = home + "master_info_"; goog...
2020-04-19 11:36:49 1536
原创 高效ubuntu命令行操作
多文件连续编号(重命名)AS1.txtAS2.txtAS3.txtAS4.txtAS5.txtAS6.txtAS7.txtrename -n 's/.+/our $i; sprintf("AS%d.txt", 1+$i++)/e' *
2020-04-13 19:11:15 185
原创 Ceres库相关知识点
Ceres库中的导数相关整理与总结数值微分-(Numeric Differential)利用极限的形式近似求解 Jacob的值使用外部库函数时解析微分(Analytic Differential)手动推导Jacob自动求导(Automatic Differential)...
2020-04-13 11:49:14 929
原创 激光SLAM知识点整理
整理学习激光SLAM过程中的零碎知识点 【高斯过程】用于连续时间的轨迹建模什么是Gaussian process? —— 说说高斯过程与高斯分布的关系 - 蓦风星吟的文章 - 知乎...
2020-04-09 16:10:48 915
原创 点云相关知识点整理(PCL)
点云知识的搬运与整理ICP & NDTICP使用kdTree结构进行最快邻域搜索;NDT使用ocTree进行网格化(体素化);
2020-04-08 12:58:37 585
转载 SLAM面试问题总结(转)
# SLAM秋招面经(大疆、华为、海康、图森、小马智行、地平线、momenta、滴滴)前段时间一直没更新博客,因为论文、实习、秋招一系列事情都非常忙,如今秋招接近尾声,稍有空闲,所以来写一个面经,希望大家能收益。## 一、大疆整体来说,大疆面试官的水平还是非常高的。一面项目技术,二面工程,三面价值观、综合能力。### 一面(50min)- 你实习做了些什么?- 谈了谈自己的项目相关...
2020-04-07 20:26:20 2136
原创 C++笔记 (持续更新)
记录关于C++的知识C++ explicit 关键字总结:explicit关键字只需用于类内的单参数构造函数前面。由于无参数的构造函数和多参数的构造函数总是显示调用,这种情况在构造函数前加explicit无意义。google的c++规范中提到explicit的优点是可以避免不合时宜的类型变换,缺点无。所以google约定所有单参数的构造函数都必须是显示的,只有极少数情况下拷贝构造函数...
2020-04-01 20:26:09 301
原创 多视图几何中的各种‘矩阵们’——视觉SLAM基础知识
本文主要是资料的综合搬运本质矩阵与基础矩阵:1.知乎解释2.几何原理推导单应矩阵:1.从零开始一起学习SLAM | 神奇的单应矩阵2.从零开始学习「张氏相机标定法」(二)单应矩阵 - 计算机视觉life的文章 - 知乎 3.为什么本质矩阵5自由度,基础矩阵7自由度,单应矩阵8自由度? - 语冰的回答 - 知乎 4.orbslam里为什么要分单应矩阵和本质矩阵来分别恢复R和T? ...
2020-03-29 15:25:23 625
转载 CNN笔记(转)
转载源地址:https://blog.csdn.net/v_JULY_v/article/details/51812459通俗理解卷积神经网络(cs231n与5月dl班课程笔记)1 前言2012年我在北京组织过8期machine learning读书会,那时“机器学习”非常火,很多人都对其抱有巨大的热情。当我2013年再次来到北京时,有一个词似乎比“机器学习”更火,那就是“深度学习”。本...
2018-12-28 10:21:48 119
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人