机器学习之OneHotEncoder独热编码和 LabelEncoder标签编码及实战

学习sklearn和kagggle时遇到的问题,什么是独热编码?为什么要用独热编码?什么情况下可以用独热编码?以及和其他几种编码方式的区别。

首先了解机器学习中的特征类别:连续型特征和离散型特征     

       拿到获取的原始特征,必须对每一特征分别进行归一化,比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].如果使用logistic回归,w1*x1+w2*x2,因为x1的取值太大了,所以x2基本起不了作用。所以,必须进行特征的归一化,每个特征都单独进行归一化。

       对于连续性特征:

  • Rescale bounded continuous features: All continuous input that are bounded, rescale them to [-1, 1] through x = (2x - max - min)/(max - min).    线性放缩到[-1,1]
  • Standardize all continuous features: All continuous input should be standardized and by this I mean, for every continuous feature, compute its mean (u) and standard deviation (s) and do x = (x - u)/s.       放缩到均值为0,方差为1

       对于离散性特征:

  • Binarize categorical/discrete features: 对于离散的特征基本就是按照one-hot(独热)编码,该离散特征有多少取值,就用多少维来表示该特征。

一. 什么是独热编码?

       独热码,在英文文献中称做 one-hot code, 直观来说就是有多少个状态就有多少比特,而且只有一个比特为1,其他全为0的一种码制。举例如下:

       假如有三种颜色特征:红、黄、蓝。 在利用机器学习的算法时一般需要进行向量化或者数字化。那么你可能想令 红=1,黄=2,蓝=3. 那么这样其实实现了标签编码,即给不同类别以标签。然而这意味着机器可能会学习到“红<黄<蓝”,但这并不是我们的让机器学习的本意,只是想让机器区分它们,并无大小比较之意。所以这时标签编码是不够的,需要进一步转换。因为有三种颜色状态,所以就有3个比特。即红色:1 0 0 ,黄色: 0 1 0,蓝色:0 0 1 。如此一来每两个向量之间的距离都是根号2,在向量空间距离都相等,所以这样不会出现偏序性,基本不会影响基于向量空间度量算法的效果。

      自然状态码为:000,001,010,011,100,101

      独热编码为:000001,000010,000100,001000,010000,100000

      来一个sklearn的例子:

from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])    # fit来学习编码
enc.transform([[0, 1, 3]]).toarray()    # 进行编码

输出:array([[ 1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.]])

数据矩阵是4*3,即4个数据,3个特征维度。

0 0 3                      观察左边的数据矩阵,第一列为第一个特征维度,有两种取值0\1. 所以对应编码方式为10 、01

1 1 0                                               同理,第二列为第二个特征维度,有三种取值0\1\2,所以对应编码方式为100、010、001

0 2 1                                               同理,第三列为第三个特征维度,有四中取值0\1\2\3,所以对应编码方式为1000、0100、0010、0001

1 0 2

再来看要进行编码的参数[0 , 1,  3], 0作为第一个特征编码为10,  1作为第二个特征编码为010, 3作为第三个特征编码为0001.  故此编码结果为 1 0 0 1 0 0 0 0 1

二. 为什么要独热编码?

      正如上文所言,独热编码(哑变量 dummy variable)是因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。       

        为什么特征向量要映射到欧式空间?

        将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

三 .独热编码优缺点

  • 优点:独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。
  • 缺点:当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。

四. 什么情况下(不)用独热编码?

  • 用:独热编码用来解决类别型数据的离散值问题,
  • 不用:将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。  Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。

总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。 

五.  什么情况下(不)需要归一化?

  • 需要: 基于参数的模型或基于距离的模型,都是要进行特征的归一化。
  • 不需要:基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。

六.  标签编码LabelEncoder

作用: 利用LabelEncoder() 将转换成连续的数值型变量。即是对不连续的数字或者文本进行编号例如:

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])

输出: array([0,0,3,2,1])

>>> le = preprocessing.LabelEncoder()
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
LabelEncoder()
>>> list(le.classes_)
['amsterdam', 'paris', 'tokyo']     # 三个类别分别为0 1 2
>>> le.transform(["tokyo", "tokyo", "paris"]) 
array([2, 2, 1]...)    
>>> list(le.inverse_transform([2, 2, 1]))   # 逆过程
['tokyo', 'tokyo', 'paris']

限制:上文颜色的例子已经提到标签编码了。Label encoding在某些情况下很有用,但是场景限制很多。再举一例:比如有[dog,cat,dog,mouse,cat],我们把其转换为[1,2,1,3,2]。这里就产生了一个奇怪的现象:dog和mouse的平均值是cat。所以目前还没有发现标签编码的广泛使用。

 附:基本的机器学习过程

 

Label encoding在某些情况下很有用,但是场景限制很多。比如有一列 [dog,cat,dog,mouse,cat],我们把其转换为[1,2,1,3,2]。这里就产生了一个奇怪的现象:dog和mouse的平均值是cat。而且像decision tree,random forest和xgboost这种算法能处理好这种转换,而且相比转换前,所需要的内存空间小一点。

One-Hot 编码即独热编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。这样做的好处主要有:1. 解决了分类器不好处理属性数据的问题; 2. 在一定程度上也起到了扩充特征的作用。

将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。离散特征进行one-hot编码,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。

基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。基于参数的模型或基于距离的模型,都是要进行特征的归一化。Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。

one hot encoding的优点就是它的值只有0和1,不同的类型存储在垂直的空间。缺点就是,当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。

总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。

七、Sklearn的LabelEncoder和OneHotEncoder实战

LabelEncoder和OneHotEncoder

我们也可以通过sklearn的模块实现对离散变量的one-hot编码,其中LabelEncoder是将离散变量替换为数字,

OneHotEncoder则实现对替换为数字的离散变量进行one-hot编码。

注:get_dummies()可以直接对字符型变量进行one-hot编码,但OneHotEncoder不能直接对字符型变量编码,因此我们需要先将字符型变量转换为数值型变量。这就是为什么在OneHotEncoder之前需要LabelEncoder的原因。

如下代码为将一列数据进行one-hot编码后,然后拼接

    all_weekday_cache={}
    for e in allday:
        all_weekday_cache[e]=pd.to_datetime(e).isoweekday()
    traindata['weekday']=traindata['sampleday'].apply(lambda x:all_weekday_cache[x])

    if flag=="train":
        Enc_ohe.fit(traindata[['weekday']])
    print(Enc_ohe.categories_) 
    print(list(Enc_ohe.categories_[0]))

    DF_dummies2 = pd.DataFrame(Enc_ohe.transform(traindata[['weekday']]).todense(), columns = list(Enc_ohe.categories_[0]))
    print(DF_dummies2.head(3))
    #拼接
    traindata = pd.concat((traindata,DF_dummies2),axis=1) # 1 水平方向拼接

打印如下:

[array([1., 2., 3., 4., 5., 6., 7.])]
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
   1.0  2.0  3.0  4.0  5.0  6.0  7.0
0  0.0  1.0  0.0  0.0  0.0  0.0  0.0
1  0.0  0.0  1.0  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0  1.0  0.0  0.0

 

例1

1
from sklearn.preprocessing import OneHotEncoder
2
ohe = OneHotEncoder()
3
ohe.fit([[1,1],[2,1],[3,2],[4,5]])
4
ohe.transform([[2,1],[3,1],[1,1],[4,5]]).toarray()
/home/bigdevelp_user/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py:368: FutureWarning: The handling of integer data will change in version 0.22. Currently, the categories are determined based on the range [0, max(values)], while in the future they will be determined based on the unique values.
If you want the future behaviour and silence this warning, you can specify "categories='auto'".
In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integers, then you can now use the OneHotEncoder directly.
  warnings.warn(msg, FutureWarning)
array([[0., 1., 0., 0., 1., 0., 0.],
       [0., 0., 1., 0., 1., 0., 0.],
       [1., 0., 0., 0., 1., 0., 0.],
       [0., 0., 0., 1., 0., 0., 1.]])

ohe.categories_
1
ohe.categories_
[array([1., 2., 3., 4.]), array([1., 2., 5.])]
例2

r
1
from sklearn.preprocessing import OneHotEncoder
2
ohe = OneHotEncoder()
3
ohe.fit([[1],[2],[3],[4]])
4
ohe.transform([[2],[3],[1],[4]]).toarray()
/home/bigdevelp_user/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py:368: FutureWarning: The handling of integer data will change in version 0.22. Currently, the categories are determined based on the range [0, max(values)], while in the future they will be determined based on the unique values.
If you want the future behaviour and silence this warning, you can specify "categories='auto'".
In case you used a LabelEncoder before this OneHotEncoder to convert the categories to integers, then you can now use the OneHotEncoder directly.
  warnings.warn(msg, FutureWarning)
array([[0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [1., 0., 0., 0.],
       [0., 0., 0., 1.]])

1
ohe.categories_
[array([1., 2., 3., 4.])]
例3

1
from sklearn.preprocessing import LabelEncoder
2
le = LabelEncoder()
3
le.fit([1,5,67,100])
4
le.transform([1,1,100,67,5])
array([0, 0, 3, 2, 1])

[
1
from sklearn.preprocessing import LabelEncoder
2
le = LabelEncoder()
3
le.fit([[1,5,67,100],[2,3,4,5]])
4
le.transform([[1,100,67,5],[2,3,4,5]])
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-15-01b4bc8aa27f> in <module>()
      1 from sklearn.preprocessing import LabelEncoder
      2 le = LabelEncoder()
----> 3 le.fit([[1,5,67,100],[2,3,4,5]])
      4 le.transform([[1,100,67,5],[2,3,4,5]])

~/anaconda3/lib/python3.6/site-packages/sklearn/preprocessing/label.py in fit(self, y)
    217         self : returns an instance of self.
    218         """
--> 219         y = column_or_1d(y, warn=True)
    220         self.classes_ = _encode(y)
    221         return self

~/anaconda3/lib/python3.6/site-packages/sklearn/utils/validation.py in column_or_1d(y, warn)
    795         return np.ravel(y)
    796 
--> 797     raise ValueError("bad input shape {0}".format(shape))
    798 
    799 

ValueError: bad input shape (2, 4)

 

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
sns.set()

%matplotlib inline

#Iris Plot
iris = load_iris()
n_samples, m_features = iris.data.shape

#Load Data
X, y = iris.data, iris.target
D_target_dummy = dict(zip(np.arange(iris.target_names.shape[0]), iris.target_names))

DF_data = pd.DataFrame(X,columns=iris.feature_names)
DF_data["target"] = pd.Series(y).map(D_target_dummy)
#sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)  \
#0                  5.1               3.5                1.4               0.2   
#1                  4.9               3.0                1.4               0.2   
#2                  4.7               3.2                1.3               0.2   
#3                  4.6               3.1                1.5               0.2   
#4                  5.0               3.6                1.4               0.2   
#5                  5.4               3.9                1.7               0.4   

DF_dummies = pd.get_dummies(DF_data["target"])
#setosa  versicolor  virginica
#0         1           0          0
#1         1           0          0
#2         1           0          0
#3         1           0          0
#4         1           0          0
#5         1           0          0

from sklearn.preprocessing import OneHotEncoder, LabelEncoder
def f1(DF_data):
    Enc_ohe, Enc_label = OneHotEncoder(), LabelEncoder()
    DF_data["Dummies"] = Enc_label.fit_transform(DF_data["target"])
    DF_dummies2 = pd.DataFrame(Enc_ohe.fit_transform(DF_data[["Dummies"]]).todense(), columns = Enc_label.classes_)
    return(DF_dummies2)

%timeit pd.get_dummies(DF_data["target"])
#1000 loops, best of 3: 777 µs per loop

%timeit f1(DF_data)
#100 loops, best of 3: 2.91 ms per loop

 

注:get_dummies返回的为数据框,OneHotEncoder返回的为数组。

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()

>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])  

>>> enc.n_values_
array([2, 3, 4])

>>> enc.feature_indices_
array([0, 2, 5, 9])

>>> enc.transform([[0, 1, 1]]).toarray()
array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])

 

 One-Hot 编码即独热编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。这样做的好处主要有:1. 解决了分类器不好处理属性数据的问题; 2. 在一定程度上也起到了扩充特征的作用。

       将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。离散特征进行one-hot编码,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。

        基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。基于参数的模型或基于距离的模型,都是要进行特征的归一化。Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。

        one hot encoding的优点就是它的值只有0和1,不同的类型存储在垂直的空间。缺点就是,当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。总的来说,要是one hot encoding的类别数目不太多,建议优先考虑。

# 简单来说 LabelEncoder 是对不连续的数字或者文本进行编号
# sklearn.preprocessing.LabelEncoder():标准化标签,将标签值统一转换成range(标签值个数-1)范围内

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit([1,5,67,100])
le.transform([1,1,100,67,5])
out: array([0, 0, 3, 2, 1], dtype=int64)

#OneHotEncoder 用于将表示分类的数据扩维:
from sklearn.preprocessing import OneHotEncode
ohe = OneHotEncoder()
ohe.fit([[1],[2],[3],[4]])
ohe.transform([[2],[3],[1],[4]]).toarray()
out:array([[ 0.,  1.,  0.,  0.],
       [ 0.,  0.,  1.,  0.],
       [ 1.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  1.]])

 

 Examples
    --------
    Given a dataset with three features and four samples, we let the encoder
    find the maximum value per feature and transform the data to a binary
    one-hot encoding.

    >>> from sklearn.preprocessing import OneHotEncoder
    >>> enc = OneHotEncoder()
    >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \
[1, 0, 2]])  # doctest: +ELLIPSIS
    OneHotEncoder(categorical_features='all', dtype=<... 'numpy.float64'>,
           handle_unknown='error', n_values='auto', sparse=True)
    >>> enc.n_values_
    array([2, 3, 4])
    >>> enc.feature_indices_
    array([0, 2, 5, 9])
    >>> enc.transform([[0, 1, 1]]).toarray()
    array([[ 1.,  0.,  0.,  1.,  0.,  0.,  1.,  0.,  0.]])

 

 Examples
    --------
    `LabelEncoder` can be used to normalize labels.

    >>> from sklearn import preprocessing
    >>> le = preprocessing.LabelEncoder()
    >>> le.fit([1, 2, 2, 6])
    LabelEncoder()
    >>> le.classes_
    array([1, 2, 6])
    >>> le.transform([1, 1, 2, 6]) #doctest: +ELLIPSIS
    array([0, 0, 1, 2]...)
    >>> le.inverse_transform([0, 0, 1, 2])
    array([1, 1, 2, 6])

    It can also be used to transform non-numerical labels (as long as they are
    hashable and comparable) to numerical labels.

    >>> le = preprocessing.LabelEncoder()
    >>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
    LabelEncoder()
    >>> list(le.classes_)
    ['amsterdam', 'paris', 'tokyo']
    >>> le.transform(["tokyo", "tokyo", "paris"]) #doctest: +ELLIPSIS
    array([2, 2, 1]...)
    >>> list(le.inverse_transform([2, 2, 1]))
    ['tokyo', 'tokyo', 'paris']

 

八、pandas的get_dummies

pd.get_dummies(prefix=)

pandas的get_dummies()可以直接对变量进行one-hot编码,其中prefix是为one-hot编码后的变量进行命名。

get_dummies()也可以对某一列数据进行。

DF_dummies = pd.get_dummies(DF_data["target"])
#setosa  versicolor  virginica
#0         1           0          0
#1         1           0          0
#2         1           0          0
#3         1           0          0
#4         1           0          0
#5         1           0          0

相关参考:

https://www.cnblogs.com/king-lps/p/7846414.html

https://blog.csdn.net/Mr_HHH/article/details/80006971

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值