我之前做cs231n看到的网上的解题过程,记录一下。原作者忘记是谁了
import numpy as np
class KNearestneighbor:
def __init__(self):
pass
def train(self,X,y):
self.x_train = X
slef.y_train = y
def predict(self,X,K=1,num_loops = 0):
if num_loops == 0 :
dists = self.compute_distance_no_loops(X)
elif num_loops == 1:
dists = self.compute_distance_one_loops(X)
elif num_loops == 2:
dists = self.compute_distance_two_loops(X)
else :
raise ValueError('Invalid value %d for num_loops '%num_loops)
return self.predict_labels(dists,k=k)
def predict_labels(self,dists,k = 1):
#有多少要预测的样本
num_test = dists.shape[0]
#预测结果数组的初始化
y_pred = np.zeros(num_test)
for i in range(num_test):
closest_y = []
#np.argsort函数axis = 0把列的元素按从小到大排序返回的矩阵中存放的是索引值
#y_indicies中存放的是与第i个预测值最接近的训练集序列
#注意是第一维度
y_indicies = np.argsort(dists[i,:],axis = 0)
#closest_y存放的是与预测值接近的k个训练集图片
closest_y = self.y_train[y_indicies[:k]]
#返回的是第几类
#尤其适用于计算数据集的标签列(y_train)的分布(distribution),也即获得 class distribution
#bincount用于计数每个参数的个数,argmax用于获取数量最多的那个参数
y_pred[i] = np.argmax(np.bincount(closest_y))
return y_pred
def compute_distance_no_loops(self,X):
num_test = X.shape[0]
num_train = self.x_train.shape[0]
dists = np.zeros((num_test,num_train))
#axis = 1是计算同一行 axis = 0是计算同一列
#计算矩阵测试图片的像素值和
test_sum = np.sum(np.square(X),axis = 1)
#计算矩阵训练图片的像素值和
train_sum = np.sum(np.square(self.x_train),axis = 1)
inner_product = np.dot(X,self.x_train.T)
# test_sum.reshape(-1,1)把列的元素放到行上
dists = np.sqrt(-2 * inner_product + test_sum.reshape(-1,1) + train_sum)
return dists
def compute_distance_one_loop(self,X):
num_test = X.shape[0]
num_train = self.x_train.shape[0]
dists = np.zeros((num_test,num_train))
for i in range(num_test):
dists[i,:] = np.sqrt(np.sum(np.square(self.x_train - X[i,:]),axis = 1))
return dists
def compute_distance_two_loops(self,X):
num_test = X.shape[0]
num_train = self.x_train.shape[0]
dists = np.zeros((num_test,num_train))
for i in range(num_test):
for j in range(num_train):
dists[i,j] = np.sqrt(np.sum(np.square(self.x_train[i,:] - X[j,:])))
import pickle
import numpy as np
import os
def load_cifar_batch(filename):
with open(filename,'rb) as f:
datadict = pickle.load(f,encoding = 'bytes')
x = datadict[b'data']
y = datadict[b'labels']
#我们采用的是cifar10数据集,该数据集被分成5份训练集和1份测试集,其中每份有 1000张32*32的RGB图,共有10类
x = x.reshape(10000,3,32,32).transpose(0,2,3,1).astype('float')
y = np.array(y)
return x,y
def load_cifar10(root):
xs = []
ys = []
for b in range(1,6):
f = os.path.join(root,'data_batch_%d'%(b,))
x,y = load_cifar_batch(f)
xs.append(x)
ys.append(y)
X_train = np.concatenate(xs)
Y_train = np.concatenate(ys)
del x,y
X_test,Y_test = load_cifar_batch(os.path.join(root,'test_batch'))
return X_train,Y_train,X_test,Y_test
import numpy as np
from dataDownload import load_cifar10
import matplotlib.pyplot as plt'
from knn import KNearestNeighbor
x_train,y_train,x_test,y_test = load_cifa10('cifar-10-batches-py')
classes = ['plane','car','bird','cat','deer','dog','frog','horse','ship','truck']
num_classes = len(classses)
samples_per_class = 7
num_training = 5000
mask = range(num_training)
x_train = x_train[mask]
y_train = y_train[mask]
num_test = 500
mask = range(num_test)
x_test = x_test[mask]
y_test = y_test[mask]
x_train = np.reshape(x_train,(x_train.shape[0],-1))
x_test = np.reshape(x_test,(x_test.shape[0],-1))
classifier = KNearestNeighbor()
classifier.train(x_train,y_train)
dists = classifier.compute_distance_two_loops(x_test)
y_test_pred = classifier.predice_labels(dists,k=1)
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy : %f' %(num_correct,num_test,accuracy))