总结CNN的发展历程,以及一些卷积操作的变形,附带基础的深度学习知识与公式

本文总结了卷积神经网络的发展历程,从Lenet-5到AlexNet,再到VGGNet、GoogleNet、ResNet和DenseNet等。探讨了不同网络结构的特点,如Inception模块、Residual块、Dense连接等。同时,介绍了多种卷积操作,如1×1卷积、3×3卷积、空洞卷积、上采样以及跳跃连接,并提及了随机分组卷积、通道加权卷积等创新操作。最后,提到了损失函数如Label Smoothing Regularization、OHEM和Focal Loss在模型优化中的作用。
摘要由CSDN通过智能技术生成

1.Lenet-5  :最先出现的卷积神经网络,1998年,由于当时的硬件还不成熟,因此到了2012年出现了AlexNet

2.AlexNet:可以说是现在卷积神经网络的雏形

3.VGGNet:五个模块的卷积叠加,网络结构如下:

 

模型结构

4.GoogleNet:inception v1,v2,v3, xception,基本思想就是对feature map用不同的卷积核filter进行卷积,然后concact,其中xception是对每个通道的feature map进行3×3的卷积,叫做通道分离卷积。

5.ResNet:分为building block,bottleneck都是叫做残差块,应为都有跳远连接,网络结构如下,主要也是五个大的模块:

结构

6.DenseNet:主要思想是当前卷积层的输出feature map都要concact上一层的卷积输出,主要网络图如下:

结构

7.一些好用的卷积操作:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值