K线形态识别_T字线和倒T字线

写在前面:
1. 本文中提到的“K线形态查看工具”的具体使用操作请查看该博文
2. K线形体所处背景,诸如处在上升趋势、下降趋势、盘整等,背景内容在K线形态策略代码中没有体现;
3. 文中知识内容来自书籍《K线技术分析》by邱立波。

目录

解说

技术特征

技术含义

K线形态策略代码

结果


解说

        T字线因为K线形状像英文字母“T”而得名,又称蜻蜓线。T字线是只有下影线没有上影线,或上影线非常短的同价位线。单日的T字线表明在多方打击下,空方已无力杀跌,股价或指数将会继续上升。

        倒T字线因为K线形状像倒写的英文字母“T”而得名,倒T字线是只有上影线没有下影线,或下影线非常短的同价位线。单日的倒T字线表明在空方打击下,多方已无力将股价或指数推高,后市可能会下跌。

         由于沪深股市实行涨跌停板制度,所以绝大数T字线和倒T字线都是以涨停或跌停收盘的。不论T字线和倒T字线是否是停板,大多都是主力操控股价的结果,因为只有主力才可以做到让股价以自己想要的价格开盘和收盘。在多空双方互不相让、激烈博弈的情况下,仅仅以巧合来解释T字线和倒T字线的成因,是很难让人信服的。

技术特征

1)T字线的开盘价、收盘价和最高价相同,呈“一”字形。

2)T字线的下影线较长,一般没有上影线,或上影线非常短,形成T字形状。

3)倒T字线的开盘价、收盘价和最低价相同,呈“一”字形。

4)倒T字线的上影线较长,一般没有下影线,或下影线非常短,形成倒T字形状。

技术含义

1)在股价或指数已有较大涨幅后出现T字线,是见顶信号。

2)在股价或指数已有较大跌幅后出现T字线,是见底信号。

3)在上涨途中出现T字线,后市继续看涨。是持仓信号。

4)在下跌途中出现T字线,后市继续看跌。持币观望。

K线形态策略代码

def excute_strategy(daily_file_path):
    '''
    名称:T字线和倒T字线
    识别:
    1. T字线只有下影线没有上影线,或上影线非常短的同价位线
    2. 倒T字线只有上影线没有下影线,或下影线非常短的同价位线
    自定义:
    1. 影线很短=》不超过上一交易日价格 0.5%
    2. 影线长 =》超过上一交易日价格 2%
    前置条件:计算时间区间 2021-01-01 到 2022-01-01
    :param daily_file_path: 股票日数据文件路径
    :return:
    '''
    import pandas as pd
    import os
    start_date_str = '2021-01-01'
    end_date_str = '2022-01-01'
    df = pd.read_csv(daily_file_path,encoding='utf-8')
    # 删除停牌的数据
    df = df.loc[df['openPrice'] > 0].copy()
    df['o_date'] = df['tradeDate']
    df['o_date'] = pd.to_datetime(df['o_date'])
    df = df.loc[(df['o_date'] >= start_date_str) & (df['o_date']<=end_date_str)].copy()
    # 保存未复权收盘价数据
    df['close'] = df['closePrice']
    # 计算前复权数据
    df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
    df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
    df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
    df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']

    # 开始计算
    df.loc[df['closePrice']>=df['openPrice'],'type'] = 1
    df.loc[df['closePrice']<df['openPrice'],'type'] = -1

    df['body_length'] = abs(df['closePrice'] - df['openPrice'])
    df.loc[df['type']==1,'top_shadow_length'] = df['highestPrice'] - df['closePrice']
    df.loc[df['type']==-1,'top_shadow_length'] = df['highestPrice'] - df['openPrice']
    df.loc[df['type']==1,'bottom_shadow_length'] = df['openPrice'] - df['lowestPrice']
    df.loc[df['type']==-1,'bottom_shadow_length'] = df['closePrice'] - df['lowestPrice']

    df['signal'] = 0
    df['signal_name'] = ''
    short_len = 0.005
    long_len = 0.02
    # T
    df.loc[(df['body_length']==0) & (df['top_shadow_length']/df['closePrice'].shift(1)<short_len) & (df['bottom_shadow_length']/df['closePrice'].shift(1)>long_len),'signal'] = 1
    df.loc[(df['body_length']==0) & (df['top_shadow_length']/df['closePrice'].shift(1)<short_len) & (df['bottom_shadow_length']/df['closePrice'].shift(1)>long_len),'signal_name'] = 'T'
    # 倒T
    df.loc[(df['body_length'] == 0) & (df['bottom_shadow_length'] / df['closePrice'].shift(1) < short_len) & (
                df['top_shadow_length'] / df['closePrice'].shift(1) > long_len), 'signal'] = 1
    df.loc[(df['body_length'] == 0) & (df['bottom_shadow_length'] / df['closePrice'].shift(1) < short_len) & (
                df['top_shadow_length'] / df['closePrice'].shift(1) > long_len), 'signal_name'] = '倒T'


    file_name = os.path.basename(daily_file_path)
    title_str = file_name.split('.')[0]

    line_data = {
        'title_str':title_str,
        'whole_header':['日期','收','开','高','低'],
        'whole_df':df,
        'whole_pd_header':['tradeDate','closePrice','openPrice','highestPrice','lowestPrice'],
        'start_date_str':start_date_str,
        'end_date_str':end_date_str,
        'signal_type':'line'
    }
    return line_data

结果

<think>好的,我现在需要帮用户解决如何使用K230进行正方形识别的问题。首先,用户提到的K230可能是一款嵌入式开发板或者图像处理设备,通常这类设备会有一定的计算能力,但资源有限,所以算法需要高效。我需要结合用户提供的引用内容,尤其是图像处理相关的步骤,来构建一个适合的流程。 首先,用户提供的引用里提到了图像处理的基本步骤,比如灰度转换、图像分割、增强、二值化、细化等。这些步骤应该能应用到正方形识别中。另外,引用里提到的直方图均衡化(引用3)、均值滤波(引用4)等方法可能对预处理有帮助。还有,用户提到CUDA内核调用(引用5),可能K230支持GPU加速,但可能需要具体了解其硬件架构,暂时先不考虑,除非确定有相关支持。 接下来,正方形识别的大致流程应该是:图像采集 → 预处理 → 轮廓检测 → 形状分析 → 筛选正方形。预处理部分需要将图像转换为灰度图(引用1),可能还需要去噪,比如使用均值滤波(引用4),但要注意均值滤波会模糊细节,可能影响边缘检测,所以可能需要权衡或选择其他滤波方法。然后图像分割,去除背景,保留主要部分,可能需要二值化(引用1中的步骤),这里可以用阈值处理,或者更高级的分割方法。 图像增强方面,直方图均衡化(引用3)可以提高对比度,帮助特征突出。二值化后,进行细化(引用1)可能有助于减少轮廓的冗余信息,但细化通常用于线条,比如指纹,对于正方形可能不需要,但可以尝试。 轮廓检测部分,可能需要使用边缘检测算法,如Canny,然后查找轮廓。找到轮廓后,计算轮廓的近似多边形,判断边数角度是否符合正方形(4条边,角度接近90度),同时考虑长宽比接近1。 在K230上实现的话,需要注意算法效率,可能使用OpenCV库的函数,比如Canny、findContours、approxPolyDP等。同时,由于K230资源有限,可能需要优化算法步骤,减少计算量,比如降低图像分辨率,或者使用ROI(感兴趣区域)来缩小处理范围。 用户提供的引用中没有提到具体的形状识别方法,所以需要结合常规的图像处理步骤。另外,可能需要考虑光照变化的影响,所以在预处理阶段要做好光照归一化,或者使用动态阈值。 总结步骤: 1. 图像采集:获取图像,可能调整分辨率。 2. 预处理:转灰度、去噪、增强对比度。 3. 图像分割:二值化,分离前景背景。 4. 轮廓检测:找所有轮廓。 5. 形状分析:近似多边形,筛选边数为4,角度长宽比符合条件。 6. 输出结果。 在具体实现时,可能需要调整参数,比如Canny的阈值、approxPolyDP的精度参数等。此外,如果K230支持硬件加速(如引用5的CUDA),可以加速某些步骤,但需要查证K230的具体硬件支持情况。 可能的问题:如何在不同光照条件下稳定检测?可能需要自适应阈值或者直方图均衡化。另外,如何处理重叠或遮挡的正方形?可能需要更复杂的算法,但用户需求可能基础,先解决简单情况。 最后,生成相关问题时要考虑用户可能进一步询问优化方法、参数调整、性能提升等。</think>### K230正方形识别方法 K230的正方形识别可通过以下步骤实现,结合图像处理与轮廓分析: --- #### **1. 图像预处理** - **灰度化**:将输入的真彩色图像转换为灰度图像,简化计算[^1]。 $$I_{gray}(x,y) = 0.299R + 0.587G + 0.114B$$ - **去噪**:使用**中值滤波**或**高斯滤波**去除噪声(避免均值滤波导致的边缘模糊)[^4]。 - **直方图均衡化**:增强对比度,使边缘更清晰[^3]。 --- #### **2. 图像分割与二值化** - **自适应阈值分割**:根据局部灰度分布生成二值图像,适应光照变化。 $$I_{binary}(x,y) = \begin{cases} 1 & \text{if } I_{gray}(x,y) > T(x,y) \\ 0 & \text{otherwise} \end{cases}$$ - **形态学操作**:通过腐蚀、膨胀消除细小干扰。 --- #### **3. 轮廓检测与筛选** - **边缘检测**:使用Canny算法提取边缘。 - **轮廓查找**:通过连通域分析获取所有轮廓。 - **多边形近似**:用`approxPolyDP`对轮廓进行多边形拟合,筛选边数为4的轮廓。 - **几何约束**: - 四边长度相近 - 内角接近$90^\circ$ - 长宽比接近1 --- #### **4. 代码示例(基于OpenCV思路)** ```python import cv2 def detect_square(image): # 灰度化与去噪 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5,5), 0) # 自适应阈值二值化 binary = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2) # 查找轮廓 contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) squares = [] for cnt in contours: peri = cv2.arcLength(cnt, True) approx = cv2.approxPolyDP(cnt, 0.02*peri, True) # 筛选四边形 if len(approx) == 4: (x, y, w, h) = cv2.boundingRect(approx) aspect_ratio = w / float(h) if 0.9 < aspect_ratio < 1.1: # 长宽比约束 squares.append(approx) return squares ``` --- #### **优化建议** 1. **GPU加速**:若K230支持CUDA,可将滤波、阈值等计算密集型任务移植到GPU[^5]。 2. **动态参数调整**:根据场景光照自动调整阈值滤波参数。 3. **层级筛选**:先检测大轮廓,再逐步细化,减少计算量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值