K线形态识别_上升(向上)弧形线

本文介绍了上升弧形线这一K线形态,它出现在上涨初期,呈现向上的抛物线走势,是股票买进的信号。文章提供了K线形态策略代码,用于识别并利用此形态进行交易决策。通过分析股价中心点的变化,寻找连续多根K线形成的上升弧形线,为交易者提供加仓和持有的依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:
1. 本文中提到的“K线形态查看工具”的具体使用操作请查看该博文
2. K线形体所处背景,诸如处在上升趋势、下降趋势、盘整等,背景内容在K线形态策略代码中没有体现;
3. 文中知识内容来自书籍《K线技术分析》by邱立波。

目录

解说

技术特征

技术含义

K线形态策略代码

结果


解说

        上升弧形线又称向上弧形线,出现在上涨初期,由若干K线形成走势呈向上抛物线的K线组合形态。

技术特征

1)在涨势初期出现。

2)由若干K线组成。

3)股价走势是一个向上的抛物线。

技术含义

        上升弧形线是买进信号,后市看涨。

        股价的升幅缓慢,在上下波动中底部逐渐抬高,呈一个向上的抛物线,形成上升弧形线。上升弧形线一般是主力操控股价留下的痕迹,这种不温不火的走势表明主力志在长远。从另一个角度看,收出上升弧形线的股票,大多基本面状况良好或即将有重大改善。因此大多数收出上升弧形线的股票,上涨周期都较长,上涨幅度有较大。

        交易者一旦发现走出上升弧形线的股票,可以逐渐加仓并耐心持有,直到趋势出现逆转信号为止。

K线形态策略代码

def excute_strategy(daily_file_path):
    '''
    名称:上升(向上)弧形线
    识别:若干K线形成走势呈向上抛物线的K线组合形态
    自定义:
    1. 向上抛物线 =》实体中心点向上递增
    2. 若干 =》至少5根
    前置条件:计算时间区间 2021-01-01 到 2022-01-01
    :param daily_file_path: 股票日数据文件路径
    :return:
    '''
    import pandas as pd
    import os

    start_date_str = '2021-01-01'
    end_date_str = '2022-01-01'
    df = pd.read_csv(daily_file_path,encoding='utf-8')
    # 删除停牌的数据
    df = df.loc[df['openPrice'] > 0].copy()
    df['o_date'] = df['tradeDate']
    df['o_date'] = pd.to_datetime(df['o_date'])
    df = df.loc[(df['o_date'] >= start_date_str) & (df['o_date']<=end_date_str)].copy()
    # 保存未复权收盘价数据
    df['close'] = df['closePrice']
    # 计算前复权数据
    df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
    df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
    df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
    df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']

    # 开始计算
    df['type'] = 0
    df.loc[df['closePrice'] >= df['openPrice'], 'type'] = 1
    df.loc[df['closePrice'] < df['openPrice'], 'type'] = -1

    df['body_length'] = abs(df['closePrice']-df['openPrice'])
    df['center_val'] = (df['closePrice'] + df['openPrice'])/2
    df['center_val0'] = 0
    df.loc[df['type']==1,'center_val0'] = df['closePrice']
    df.loc[df['type']==-1,'center_val0'] = (df['closePrice'] + df['openPrice'])/2
    df['center_chg'] = df['center_val'] - df['center_val'].shift(1)
    df['center_chg0'] = df['center_val0'] - df['center_val0'].shift(1)
    df['center_chg1'] = df['closePrice'] - df['closePrice'].shift(1)

    df['target_yeah'] = 0
    df.loc[df['center_chg']>0,'target_yeah'] = 1
    df.loc[df['center_chg0']>0,'target_yeah'] = 1
    df.loc[df['center_chg1']>0,'target_yeah'] = 1

    df['ext_0'] = df['target_yeah'] - df['target_yeah'].shift(1)
    df['ext_1'] = df['target_yeah'] - df['target_yeah'].shift(-1)
    df.reset_index(inplace=True)
    df['i_row'] = [i for i in range(0, len(df))]
    df_m_s = df.loc[df['ext_0'] == 1].copy()
    df_m_e = df.loc[df['ext_1'] == 1].copy()
    i_row_s = df_m_s['i_row'].values.tolist()
    i_row_e = df_m_e['i_row'].values.tolist()

    i_row_two = i_row_s + i_row_e
    i_row_two.sort()

    df['signal'] = 0
    df['signal_name'] = ''
    for s, e in zip(i_row_s, i_row_e):
        if e - s < 5:
            continue
        # 分成三段,center_chg 累计和递增
        sum0 = 0
        sum1 = 0
        sum2 = 0
        temp_len = int((e - s) / 3)
        for i in range(s, s + temp_len):
            sum0 += df.iloc[i]['center_chg']
        for i in range(s + temp_len, s + 2 * temp_len):
            sum1 += df.iloc[i]['center_chg']
        for i in range(s + 2 * temp_len, e + 1):
            sum2 += df.iloc[i]['center_chg']
        if sum0*2<sum1 and sum1*2<sum2 and (sum0 + sum1) < sum2:
            pass
        else:
            continue

        df.loc[(df['i_row'] >= s) & (df['i_row'] <= e), 'signal'] = 1
        df.loc[(df['i_row'] >= s) & (df['i_row'] <= e), 'signal_name'] = str(e - s)
        pass

    file_name = os.path.basename(daily_file_path)
    title_str = file_name.split('.')[0]

    line_data = {
        'title_str':title_str,
        'whole_header':['日期','收','开','高','低'],
        'whole_df':df,
        'whole_pd_header':['tradeDate','closePrice','openPrice','highestPrice','lowestPrice'],
        'start_date_str':start_date_str,
        'end_date_str':end_date_str,
        'signal_type':'duration_detail',
        'duration_len':[],
        'temp':len(df.loc[df['signal']==1])
    }
    return line_data

结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值