写在前面:
1. 本文中提到的“K线形态查看工具”的具体使用操作请查看该博文;
2. K线形体所处背景,诸如处在上升趋势、下降趋势、盘整等,背景内容在K线形态策略代码中没有体现;
3. 文中知识内容来自书籍《K线技术分析》by邱立波。
目录
解说
跳空上扬又称升势鹤鸦缺口,出现在上涨趋势中,由一阴一阳两根K线组成,第一根是和前一根K线留下跳空缺口的阴线,第二根是收盘价在第一根阳线缺口上方附近的阴线。
技术特征
1)出现在上涨趋势中。
2)由两根一阳一阴K线组成。
3)第一根是跳空上扬的阳线,收盘时在前一根K线上方留下一个跳空缺口。
4)第二根是一根低收的阴线,收在前一根阳线缺口上方附近。
技术含义
跳空上扬是买进信号,继续看涨。
一般来说,跳空上扬是行情上涨过程中洗盘换手形成的。在股价上涨趋势中,出现了一根跳空上扬的阳线,第二天股价虽然不涨反跌,收出阴线,但收盘价依然没有填补前一天阳线的跳空缺口,说明股价上升过程中虽然遇到了空方的抛盘,但是并没有给多方造成重大阻碍。多方将抛盘系数收入囊中,之后继续推动股价上涨。
K线形态策略代码
def excute_strategy(daily_file_path):
'''
名称:跳空上扬(升势鹤鸦缺口)
识别:
1. 由两根一阳一阴K线组成
2. 第一根是跳空上扬的阳线,收盘时在前一根K线上方留下一个跳空缺口
2. 第二根是一根低收的阴线,收在前一根阳线缺口上方附近
自定义:
1. 阳线缺口上方附近 =》不低于缺口位置下方的0.5%
前置条件:计算时间区间 2021-01-01 到 2022-01-01
:param daily_file_path: 股票日数据文件路径
:return:
'''
import pandas as pd
import os
start_date_str = '2021-01-01'
end_date_str = '2022-01-01'
df = pd.read_csv(daily_file_path,encoding='utf-8')
# 删除停牌的数据
df = df.loc[df['openPrice'] > 0].copy()
df['o_date'] = df['tradeDate']
df['o_date'] = pd.to_datetime(df['o_date'])
df = df.loc[(df['o_date'] >= start_date_str) & (df['o_date']<=end_date_str)].copy()
# 保存未复权收盘价数据
df['close'] = df['closePrice']
# 计算前复权数据
df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']
# 开始计算
df['type'] = 0
df.loc[df['closePrice'] >= df['openPrice'], 'type'] = 1
df.loc[df['closePrice'] < df['openPrice'], 'type'] = -1
df['body_length'] = abs(df['closePrice']-df['openPrice'])
df['gap_length'] = 0
df.loc[(df['type']==1) & (df['type'].shift(1)==1),'gap_length'] = df['openPrice'] - df['closePrice'].shift(1)
df.loc[(df['type']==1) & (df['type'].shift(1)==-1),'gap_length'] = df['openPrice'] - df['openPrice'].shift(1)
df['signal'] = 0
df['signal_name'] = ''
df.loc[(df['gap_length']>0) & (df['type'].shift(-1)==-1) & ((df['openPrice']-df['body_length']*0.005)<df['closePrice'].shift(-1)),'signal'] = 1
file_name = os.path.basename(daily_file_path)
title_str = file_name.split('.')[0]
line_data = {
'title_str':title_str,
'whole_header':['日期','收','开','高','低'],
'whole_df':df,
'whole_pd_header':['tradeDate','closePrice','openPrice','highestPrice','lowestPrice'],
'start_date_str':start_date_str,
'end_date_str':end_date_str,
'signal_type':'duration',
'duration_len':[0],
'temp':len(df.loc[df['signal']==1])
}
return line_data