K线形态识别_下降三部曲(降势三鹤)

本文详细介绍了K线形态中的下降三部曲,这是一种出现在下跌趋势中的卖出信号。该形态由两根大阴线中间夹着三根未能突破第一根阴线开盘价的小阳线组成,最后一根大阴线覆盖前面的小阳线。提供的K线形态策略代码用于自动检测这一形态,帮助交易者识别卖出时机。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:
1. 本文中提到的“K线形态查看工具”的具体使用操作请查看该博文
2. K线形体所处背景,诸如处在上升趋势、下降趋势、盘整等,背景内容在K线形态策略代码中没有体现;
3. 文中知识内容来自书籍《K线技术分析》by邱立波。

目录

解说

技术特征

技术含义

K线形态策略代码

结果


解说

        下降三部曲又称降势三鹤,出现在下跌途中,由两根中阴线或大阴线中间夹着三根没有突破第一根阴线开盘价的三根小阳线组成。

技术特征

1)出现在下跌趋势中。

2)由五根大小不等的K线组合而成。

3)在拉出一根中阴线或大阴线后,接着出现三根小阳线,但都没有突破第一根阳线的开盘价。

4)最后一根大阴线或中阴线全部或大部分覆盖了前面三根小阳线。

技术含义

        下降三部曲是卖出信号,后市看跌。

        下降三部曲的出现,表明多方虽然努力反抗,但微弱的反弹很快就在空方的打击下夭折了,因此后市继续看跌。遇到这种走势,交易者只可卖出,不可买进。

K线形态策略代码

def excute_strategy(daily_file_path):
    '''
    名称:下降三部曲(降势三鹤)
    识别:
    1. 由两根中阴线或大阴线中间夹着三根没有突破第一根阴线开盘价的三根小阳线组成
    2. 最后一根大阴线或中阴线全部或大部分覆盖了前面三根小阳线
    自定义:
    1. 全部或大部分覆盖 =》实体上下向外延展实体的10%就可以全覆盖
    前置条件:计算时间区间 2021-01-01 到 2022-01-01
    :param daily_file_path: 股票日数据文件路径
    :return:
    '''
    import pandas as pd
    import os

    start_date_str = '2021-01-01'
    end_date_str = '2022-01-01'
    df = pd.read_csv(daily_file_path,encoding='utf-8')
    # 删除停牌的数据
    df = df.loc[df['openPrice'] > 0].copy()
    df['o_date'] = df['tradeDate']
    df['o_date'] = pd.to_datetime(df['o_date'])
    df = df.loc[(df['o_date'] >= start_date_str) & (df['o_date']<=end_date_str)].copy()
    # 保存未复权收盘价数据
    df['close'] = df['closePrice']
    # 计算前复权数据
    df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
    df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
    df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
    df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']

    # 开始计算
    df['type'] = 0
    df.loc[df['closePrice'] > df['openPrice'], 'type'] = 1
    df.loc[df['closePrice'] < df['openPrice'], 'type'] = -1

    df['body_length'] = abs(df['closePrice']-df['openPrice'])

    df['big_yeah'] = 0
    df.loc[(df['type']==-1) & (df['body_length']/df['closePrice'].shift(1)>0.02),'big_yeah'] = 1
    df['small_yeah'] = 0
    df.loc[(df['type']==1) & (df['body_length']/df['closePrice'].shift(1)>0.005) & (df['body_length']/df['closePrice'].shift(1)<0.015),'small_yeah'] = 1
    df['five_yeah'] = 0
    df.loc[(df['big_yeah']==1) & (df['small_yeah'].shift(-1)==1) & (df['small_yeah'].shift(-2)==1) & (df['small_yeah'].shift(-3)==1) & (df['big_yeah'].shift(-4)==1),'five_yeah'] = 1
    df['pre_two_yeah'] = 0
    df.loc[(df['five_yeah']==1) & (df['openPrice']>df['closePrice'].shift(-1)) & (df['openPrice']>df['closePrice'].shift(-2)) & (df['openPrice']>df['closePrice'].shift(-3)),'pre_two_yeah'] = 1
    df['last_two_yeah'] = 0
    df['last_two_yeah0'] = 0
    df.loc[(df['pre_two_yeah']==1) & (df['openPrice'].shift(-4)+df['body_length'].shift(-4)*0.1>df['closePrice'].shift(-1)) & (df['openPrice'].shift(-4)+df['body_length'].shift(-4)*0.1>df['closePrice'].shift(-2)) & (df['openPrice'].shift(-4)+df['body_length'].shift(-4)*0.1>df['closePrice'].shift(-3)),'last_two_yeah'] = 1
    df.loc[(df['last_two_yeah']==1) & (df['closePrice'].shift(-4)-df['body_length'].shift(-4)*0.1<df['closePrice'].shift(-1)) & (df['closePrice'].shift(-4)-df['body_length'].shift(-4)*0.1<df['closePrice'].shift(-2)) & (df['closePrice'].shift(-4)-df['body_length'].shift(-4)*0.1<df['closePrice'].shift(-3)),'last_two_yeah0'] = 1

    df['signal'] = 0
    df['signal_name'] = ''
    df.loc[df['last_two_yeah0'] == 1, 'signal'] = 1


    file_name = os.path.basename(daily_file_path)
    title_str = file_name.split('.')[0]

    line_data = {
        'title_str':title_str,
        'whole_header':['日期','收','开','高','低'],
        'whole_df':df,
        'whole_pd_header':['tradeDate','closePrice','openPrice','highestPrice','lowestPrice'],
        'start_date_str':start_date_str,
        'end_date_str':end_date_str,
        'signal_type':'duration',
        'duration_len':[-3],
        'temp':len(df.loc[df['signal']==1])
    }
    return line_data

结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值