voc数据集标注格式简单介绍

刚写完coco数据集,顺便把voc数据集的标注格式也介绍一下~
两个标注格式最大的不同当然就是:
coco标注的文件是json格式的,上一篇博客已经有完整的介绍了
voc则是xml格式的~

Pascal VOC数据集介绍

首先,voc数据集下载下来会有这么几个文件夹:

  • Annotations
  • ImageSets
  • JPEGImages
  • SegmentationClass
  • SegmentationObject
1、JPEGImages

主要提供的是PASCAL VOC所提供的所有的图片信息,包括训练图片,测试图片
这些图像就是用来进行训练和测试验证的图像数据。

2、Annotations

主要存放xml格式的标签文件,每个xml对应JPEGImage中的一张图片

<annotation>  
    <folder>VOC2012</folder>                             
    <filename>2007_000392.jpg</filename>                             //文件名  
    <source>                                                         //图像来源(不重要)  
        <database>The VOC2007 Database</database>  
        <annotation>PASCAL VOC2007</annotation>  
        <image>flickr</image>  
    </source>  
    <size>                                            //图像尺寸(长宽以及通道数)                        
        <width>500</width>  
        <height>332</height>  
        <depth>3</depth>  
    </size>  
    <segmented>1</segmented>            //是否用于分割(在图像物体识别中01无所谓)  
    <object>                              //检测到的物体  
        <name>horse</name>                                         //物体类别  
        <pose>Right</pose>                                         //拍摄角度  
        <truncated>0</truncated>                                   //是否被截断(0表示完整)  
        <difficult>0</difficult>                                   //目标是否难以识别(0表示容易识别)  
        <bndbox>                                                   //bounding-box(包含左下角和右上角xy坐标)  
            <xmin>100</xmin>  
            <ymin>96</ymin>  
            <xmax>355</xmax>  
            <ymax>324</ymax>  
        </bndbox>  
    </object>  
    <object>              //检测到多个物体  
        <name>person</name>  
        <pose>Unspecified</pose>  
        <truncated>0</truncated>  
        <difficult>0</difficult>  
        <bndbox>  
            <xmin>198</xmin>  
            <ymin>58</ymin>  
            <xmax>286</xmax>  
            <ymax>197</ymax>  
        </bndbox>  
    </object>  
</annotation> 
3、ImageSets
  • Action // 人的动作
  • Layout // 人体的具体部位
  • Main // 图像物体识别的数据,总共20类, 需要保证train val没有交集
    • train.txt
    • val.txt
    • trainval.txt
  • Segmentation // 用于分割的数据
4、SegmentationObject & SegmentationClass

保存的是物体分割后的数据,在物体识别中没有用到

  • 18
    点赞
  • 71
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
VOC数据集格式是指利用XML文件来描述图像分类、检测、分割等任务的数据集格式。将数据集转化为VOC格式的步骤如下: 1. 创建VOC数据集文件夹 首先需要创建一个VOC数据集文件夹,例如:VOCdevkit/VOC2007。 2. 将图像和标注文件放入VOC数据集文件夹 将图像和对应的标注文件放入VOC数据集文件夹中,其中标注文件格式为XML文件。 3. 编写XML文件 对于每张图像,需要编写一个对应的XML文件,用于描述图像中出现的目标物体的位置、类别等信息。XML文件格式如下: ``` <annotation> <folder>folder_name</folder> <filename>image_name</filename> <size> <width>image_width</width> <height>image_height</height> <depth>image_depth</depth> </size> <object> <name>object_name</name> <bndbox> <xmin>xmin_value</xmin> <ymin>ymin_value</ymin> <xmax>xmax_value</xmax> <ymax>ymax_value</ymax> </bndbox> </object> </annotation> ``` 其中,folder为图像所在文件夹名称,filename为图像文件名,size为图像的尺寸信息,object为目标物体的信息,包括名称和位置信息。 4. 生成VOC数据集列表文件 最后需要生成一个VOC数据集列表文件,用于描述图像和对应的XML文件的关系。列表文件格式如下: ``` image_name.jpg image_name.xml ``` 其中,image_name.jpg为图像文件名,image_name.xml为对应的XML文件名。 以上就是将数据集转化为VOC格式的步骤,可以使用Python脚本实现自动化处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龚大龙

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值