饭后小甜点leetcode——动态规划

Problem Summary

  • 爬楼梯(Fibonacci序列同理)
    d p [ i ] dp[i] dp[i]表示从最开始到达第i阶的方法种数
    d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] dp[i] = dp[i-1] + dp[i-2] dp[i]=dp[i1]+dp[i2]
    边界
    d p [ 0 ] = 1 , d p [ 1 ] = 1 dp[0] = 1, dp[1] = 1 dp[0]=1dp[1]=1
    leetcode中类似题目:

  • 最大连续子序列和
    d p [ i ] dp[i] dp[i]表示以 A [ i ] A[i] A[i]作为末尾的连续序列的最大和
    d p [ i ] = m a x { A [ i ] , d p [ i − 1 ] + A [ i ] } dp[i] = max\{A[i], dp[i-1]+A[i]\} dp[i]=max{A[i],dp[i1]+A[i]}
    边界
    d p [ 0 ] = A [ 0 ] dp[0]=A[0] dp[0]=A[0]
    leetcode中类似题目:

  • 最长不下降子序列(LIS)
    d p [ i ] dp[i] dp[i]表示以 A [ i ] A[i] A[i]结尾的最长不下降子序列长度
    d p [ i ] = m a x { 1 , d p [ j ] + 1 } ,   ( j = 1 , 2 , . . . , i − 1 a n d A [ j ] &lt; A [ i ] ) dp[i] = max\{1, dp[j]+1\},\ (j=1,2,...,i-1 and A[j]&lt;A[i]) dp[i]=max{1,dp[j]+1}, (j=1,2,...,i1andA[j]<A[i])
    边界
    d p [ i ] = 1   ( 1 ≤ i ≤ n ) dp[i]=1\ (1{\leq}i{\leq}n) dp[i]=1 (1in)
    leetcode中类似题目:

  • 最长公共子序列(LCS)
    d p [ i ] [ j ] dp[i][j] dp[i][j]表示字符串 A A A i i i号位和字符串 B B B j j j号位之前的LCS长度
    d p [ i ] [ j ] = { d p [ i − 1 ] [ j − 1 ] + 1 , A [ i ] = = B [ j ] m a x { d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] } , A [ i ] ! = B [ j ] dp[i][j]= \begin{cases} dp[i-1][j-1]+1,A[i]==B[j]\\ max\{dp[i-1][j], dp[i][j-1]\},A[i]!=B[j]\\ \end{cases} dp[i][j]={dp[i1][j1]+1,A[i]==B[j]max{dp[i1][j],dp[i][j1]},A[i]!=B[j]
    边界
    d p [ i ] [ 0 ] = d p [ 0 ] [ j ] = 0   ( 0 ≤ i ≤ n , 0 ≤ j ≤ m ) dp[i][0]=dp[0][j]=0\ (0{\leq}i{\leq}n,0{\leq}j{\leq}m) dp[i][0]=dp[0][j]=0 (0in,0jm)
    leetcode中类似题目:

  • 最长回文子串
    d p [ i ] [ j ] dp[i][j] dp[i][j]表示 S [ i ] S[i] S[i] S [ j ] S[j] S[j]所表示的子串是否是回文子串
    d p [ i ] [ j ] = { d p [ i + 1 ] [ j − 1 ] ,   S [ i ] = = S [ j ]   0 ,   S [ i ] ! = S [ j ] dp[i][j]= \begin{cases} dp[i+1][j-1],\ S[i]==S[j]\\ \ 0,\ S[i]!=S[j]\\ \end{cases} dp[i][j]={dp[i+1][j1], S[i]==S[j] 0, S[i]!=S[j]
    边界
    d p [ i ] [ i ] = 0 ,   d p [ i ] [ i + 1 ] = ( S [ i ] = = S [ i + 1 ] ? 1 : 0 ) dp[i][i]=0,\ dp[i][i+1]=(S[i]==S[i+1]?1:0) dp[i][i]=0, dp[i][i+1]=(S[i]==S[i+1]?1:0)
    leetcode中类似题目:

  • 数塔DP
    d p [ i ] [ j ] dp[i][j] dp[i][j]表示从第 i i i行第 j j j个数字出发的到达最底层的所有路径上所能得到的最大和, f f f是存放数字的数组
    d p [ i ] [ j ] = m a x ( d p [ i + 1 ] [ j ] , d p [ i + 1 ] [ j + 1 ] ) + f [ i ] [ j ] dp[i][j] = max(dp[i+1][j], dp[i+1][j+1])+f[i][j] dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+f[i][j]
    边界
    d p [ n ] [ j ] = = f [ n ] [ j ]   ( 1 ≤ j ≤ n ) dp[n][j]==f[n][j]\ (1{\leq}j{\leq}n) dp[n][j]==f[n][j] (1jn)
    leetcode中类似题目:

  • DAG最长路
    d p [ i ] dp[i] dp[i]表示从 i i i号顶点出发所能获得的最长路经长度
    leetcode中类似题目:

  • 01背包
    d p [ i ] [ j ] dp[i][j] dp[i][j]表示前 i i i件物品恰好装入容量为 v v v的背包中所能获得的最大价值,共 n n n件物品,每件物品的重量 w [ i ] w[i] w[i],价值 c [ i ] c[i] c[i],背包容量 V V V
    d p [ i ] [ v ] = m a x { d p [ i − 1 ] [ v ] , d p [ i − 1 ] [ v − w [ i ] ] + c [ i ] } dp[i][v] = max\{dp[i-1][v],dp[i-1][v-w[i]]+c[i]\} dp[i][v]=max{dp[i1][v],dp[i1][vw[i]]+c[i]}
    边界
    d p [ 0 ] [ v ] = 0   ( 0 ≤ v ≤ V ) dp[0][v]=0\ (0{\leq}v{\leq}V) dp[0][v]=0 (0vV)
    leetcode中类似题目:

  • 完全背包
    d p [ i ] [ j ] dp[i][j] dp[i][j]表示前 i i i件物品恰好装入容量为 v v v的背包中所能获得的最大价值
    d p [ i ] [ v ] = m a x { d p [ i − 1 ] [ v ] , d p [ i ] [ v − w [ i ] ] + c [ i ] } dp[i][v] = max\{dp[i-1][v],dp[i][v-w[i]]+c[i]\} dp[i][v]=max{dp[i1][v],dp[i][vw[i]]+c[i]}
    边界
    d p [ 0 ] [ v ] = 0   ( 0 ≤ v ≤ V ) dp[0][v]=0\ (0{\leq}v{\leq}V) dp[0][v]=0 (0vV)
    leetcode中类似题目:

一些经典例题

网格DP系列
背包DP系列
序列DP系列
划分DP系列
区间DP系列
博弈DP系列
双序列DP系列
卖股票系列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值