题意:
A和B进行n轮的比赛,A拥有N张牌,B拥有N张牌.
A,B任意出牌,谁出的牌大则谁得一分.
现在要求出A获得分的期望.
题解:
期望为平均值,期望具有累加性!
而每一轮相当是一局独立重复事件.对于每一轮来说,A[i]能得分的期望是 Ei = 1*ti / n + 0 * (n-ti) / n
这里的ti 是 对于A[i] 来说其能打败B[i]中的牌的个数
于是对于每一个A[i]来说,我们可以用二分计算出在B中有多少牌A[i]能打败 即 计算出 ti
于是我们可以根据这个思想得出;
#include<iostream>
#include<cstdio>
#include<cstring>
#include<set>
#include<algorithm>
using namespace std;
const int maxn = 1e5+10;
int a[maxn],b[maxn];
int main()
{
int caset,cas=0;scanf("%d",&caset);
while(caset--){
int n;scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%d",&a[i]);
for(int j=0;j<n;j++) scanf("%d",&b[j]);
sort(a,a+n);sort(b,b+n);
double tot = 0;
for(int i=0;i<n;i++) {
int ans = lower_bound(b,b+n,a[i]) - b;
tot += 1.0 * ans / n;
}
printf("Case %d: %.2f\n",++cas,tot);
}
return 0;
}