深度学习基础

为什么在分类问题中 Loss 一般用交叉熵损失函数(cross entropy) 而不适用类似平方损失函数

交叉熵适合衡量两个概率分布的差异

为什么需要 非线性的激活函数

训练误差 (training error)和泛化误差(generalization error) 

虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度训练数据集大小

训练数据集大小

影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。

防止过拟合的方法

权重衰减(weight decay)

丢弃法 dropout

正向传播  forward propagation 和 反向传播 back-propagation

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值