为什么在分类问题中 Loss 一般用交叉熵损失函数(cross entropy) 而不适用类似平方损失函数
交叉熵适合衡量两个概率分布的差异
为什么需要 非线性的激活函数
训练误差 (training error)和泛化误差(generalization error)
虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。
训练数据集大小
影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。
防止过拟合的方法:
权重衰减(weight decay)
丢弃法 dropout
正向传播 forward propagation 和 反向传播 back-propagation