过拟合和欠拟合

本文介绍了过拟合和欠拟合的概念,过拟合表现为训练集上表现好,测试集上表现一般,可能由于训练数据不足、特征过多或过度训练引起。解决方法包括数据清洗、增加训练数据、正则化等。欠拟合则是模型未能捕捉到数据特征,可能因特征不足造成,解决方法包括添加特征项、多项式特征和减少正则化。判定方法是通过K折交叉验证观察训练集和验证集的误差率变化。
摘要由CSDN通过智能技术生成

过拟合(overfitting)

过拟合指的是模型在训练集上表现的很好,但是在训练集外的数据集上(e.g.,交叉验证集和测试集)表现一般,也就是说模型对对新数据的预测表现一般,泛化(generalization)能力较差。

产生原因

a.训练数据过少或存在噪音,无法对整个数据的分布进行估计
b.特征维度过多,求解模型中没有那么多的特征值得重用
c.在对模型进行过度训练(overtraining)时,常常会导致模型的过拟合

解决办法

数据清洗、增加训练集、early stopping、数据集扩增(Data augmentation)、正则化(Regularization)、Dropout(神经网络)

欠拟合(underfitting)

过拟合指的是模型没有很好地捕捉到数据特征,导致拟合的函数在训练集上表现效果差,预测的准确率低。

产生原因

解决办法

1.添加其他特征项(e.g.,“组合”、“泛化”、“相关性”),模型出现欠拟合的时候是因为特征项不够导致的,可以添加其他特征项来很好地解决。
2.添加多项式特征,例如将线性模型通过添加二次项或者三次项使模型泛化能力更强
3.减少正则化参数,正则化的目的是用来防止过拟合的,当模型出现了欠拟合,则需要减少正则化参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值