【每日一题】LeetCode. 343. 整数拆分

本文解析了LeetCode上的一道经典题目——整数拆分问题,旨在找到将给定正整数拆分为至少两个正整数之和时,使这些整数乘积最大化的解决方案。通过动态规划方法,文章详细阐述了如何构建递推公式并提供AC代码,同时提及数学优化求解方法。

每日一题,防止痴呆 = =

一、题目大意

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
在这里插入图片描述

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/integer-break

二、题目思路以及AC代码

两周没写题了,感觉确实手生了不少,主要是去和女票毕业旅行了,之后可没机会出去玩了 = =

题目思路

这道题用动态规划就可以求解。我们设 dp[i] 是给定正整数 i,将 i 拆分成至少两个正整数的和,这些正整数乘积的最大值。那么我们就可以建立递推公式如下:

dp[i] = max(j * dp[i - j], j * (i - j))

这里面的 j 是从 1 - i,也就是说,在求解 dp[i] 的时候,只有两种可能,要么是将 i 拆分成 j 和 i - j,要么在上面的基础上再对 i - j 进行拆分。

官方解答里面还提供了两种数学的优化求解方法,因为没有什么共性,所以我就大致看了一下,感兴趣的可以自己去看看

AC代码
class Solution {
public:
    int integerBreak(int n) {
        int dp[n+1];
        dp[2] = 1;
        for (int i=3;i<=n;i++) {
            dp[i] = max(i-1, dp[i-1]);
            for (int j=2;j<i-1;j++) {
                dp[i] = max(max(j * (i-j), j * dp[i-j]), dp[i]);
            }
        }

        return dp[n];
    }
};

如果有问题,欢迎大家指正!!!

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值