每日一题,防止痴呆 = =
一、题目大意
给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/integer-break
二、题目思路以及AC代码
两周没写题了,感觉确实手生了不少,主要是去和女票毕业旅行了,之后可没机会出去玩了 = =
题目思路
这道题用动态规划就可以求解。我们设 dp[i] 是给定正整数 i,将 i 拆分成至少两个正整数的和,这些正整数乘积的最大值。那么我们就可以建立递推公式如下:
这里面的 j 是从 1 - i,也就是说,在求解 dp[i] 的时候,只有两种可能,要么是将 i 拆分成 j 和 i - j,要么在上面的基础上再对 i - j 进行拆分。
官方解答里面还提供了两种数学的优化求解方法,因为没有什么共性,所以我就大致看了一下,感兴趣的可以自己去看看
AC代码
class Solution {
public:
int integerBreak(int n) {
int dp[n+1];
dp[2] = 1;
for (int i=3;i<=n;i++) {
dp[i] = max(i-1, dp[i-1]);
for (int j=2;j<i-1;j++) {
dp[i] = max(max(j * (i-j), j * dp[i-j]), dp[i]);
}
}
return dp[n];
}
};
如果有问题,欢迎大家指正!!!
本文解析了LeetCode上的一道经典题目——整数拆分问题,旨在找到将给定正整数拆分为至少两个正整数之和时,使这些整数乘积最大化的解决方案。通过动态规划方法,文章详细阐述了如何构建递推公式并提供AC代码,同时提及数学优化求解方法。
563

被折叠的 条评论
为什么被折叠?



