每日一题,防止痴呆 = =
一、题目大意
一些恶魔抓住了公主(P)并将她关在了地下城的右下角。地下城是由 M x N 个房间组成的二维网格。我们英勇的骑士(K)最初被安置在左上角的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。
骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。
有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。
为了尽快到达公主,骑士决定每次只向右或向下移动一步。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/dungeon-game
二、题目思路以及AC代码
思路:动态规划
说真的,这题我真没想到就直接用动态规划就解决了,还标记的是困难,10分钟搞定后就想说一句,就这?
装个杯,回归正题。其实现在遇到地图之类的问题,我是首先考虑BFS,然后考虑DFS,然后考虑动态规划,最后如果实在没有办法看看二分可以不可以解决。这题我们就可以用动态规划来解决,一开始我还想着用DFS + 记忆化搜索来着,有兴趣的同学可以试一试。
DP的话,我们设 dp[i][j] 是从 (i, j) 想要到达终点所需要的健康点数。那么由于只能往右和下运动,所以我的递推公式如下:
dp[i][j] = max(min(dp[i][j + 1] - dungeon[i][j], dp[i + 1][j] - dungeon[i][j]), 1)
无非就是看右边和下边哪一个需要的健康点数少,然后再根据这个少的健康点数计算当前需要的健康点数,但是有一点需要注意的是,由于勇士在每个点的时候,需要的健康点数至少是1,所以我们要取计算结果和1中较大的一个。
然后问题就解决了。
AC代码
class Solution {
public:
int calculateMinimumHP(vector<vector<int>>& dungeon) {
int m = dungeon.size();
if (!m) return 0;
int n = dungeon[0].size();
if (!n) return 0;
int dp[m][n];
dp[m-1][n-1] = max(1 - dungeon[m-1][n-1], 1);
for (int i=m-2;i>=0;i--) {
dp[i][n-1] = max(dp[i+1][n-1] - dungeon[i][n-1], 1);
}
for (int i=n-2;i>=0;i--) {
dp[m-1][i] = max(dp[m-1][i+1] - dungeon[m-1][i], 1);
}
for (int i=m-2;i>=0;i--) {
for (int j=n-2;j>=0;j--) {
dp[i][j] = max(min(dp[i+1][j] - dungeon[i][j], dp[i][j+1] - dungeon[i][j]), 1);
}
}
return max(dp[0][0], 1);
}
};
如果有问题,欢迎大家指正!!!