机器学习 -- 朴素贝叶斯(案例:预测旧金山犯罪)

该博客介绍了如何运用朴素贝叶斯模型预测旧金山的犯罪情况。通过下载数据集,选择合适的特征,使用LabelEncoder对犯罪类别编码,并对小时、星期几和警区特征进行因子化,构建哑变量。最后,通过训练和测试数据集评估模型,预测准确率为22%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 下载数据集

下载地址为:https://www.kaggle.com/c/sf-crime/data

二. 数据集读取

将train.csv放到和python文件的同级目录下,便于使用。

(1)导入需要的模块和包。

import pandas as pd
from sklearn import *

(2)读取文件。

train_df = pd.read_csv('train.csv')

(3)读取文件内容如下:

三. 数据集类别和特征的选取

        观察上图数据集,有日期、犯罪种类、描述、星期几、解决方案、地址及XY坐标等多列。我们将“犯罪类别”设置为类别,同时这里不将“罪行描述”、“X/Y坐标”、“结果”作为其特征。

四. 选择合适的朴素贝叶斯模型

sklearn提

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值