Kaggle项目之旧金山犯罪类型预测

本文介绍了旧金山犯罪类型的预测项目,利用Kaggle数据集,包括犯罪时间、地点等信息,目标预测犯罪种类。数据预处理涉及日期特征提取、区编码、地址信息提取和特征选择。最终选用KNN模型,尽管准确率约0.2,但考虑到数据特性,此结果可接受。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一 项目简介

在1934到1963年间,旧金山因为它的高犯罪率而臭名昭著

我们这个项目的数据集包括了近12年的在旧金山发生的犯罪报告,给定了具体的时间和位置,我们的目标是预测出具体的犯罪种类。

二 数据概览

这个数据集中数据的特征并不多,但是样本量有一点大。特征有以下这些:

  • Dates - 案发的具体时间
  • Category - 案件的种类,也是我们要去预测的
  • Descript - 案件描述(仅在训练集中有)
  • DayOfWeek - 星期几
  • PdDistrict - 属于哪个片区管辖
  • Resolution - 案件如何解决(仅在训练集中有)
  • Address - 具体案发地址
  • X - 案发地x坐标
  • Y - 案发地y坐标

三 数据预处理

import pandas as pd
import numpy as np
import seaborn as sns
train=pd.read_csv(r'...\Kaggle\sf-crime
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值