机器学习 -- KNN算法(十三 使用归一化后的数据进行KNN算法分类)

使用归一化后的数据进行KNN算法分类

1. 导入需要的模块和包:

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

2. 加载数据集

# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

3. 数据切分

# 数据切分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=666)

4. 数据归一化处理

# 归一化处理
standardScaler = StandardScaler()
standardScaler.fit(X_train)
X_train = standardScaler.transform(X_train)

standardScaler.fit(X_test)
X_test_standard = standardScaler.transform(X_test)

5. 进行kNN分类

knn_clf = KNeighborsClassifier(n_neighbors=3)
knn_clf.fit(X_train, y_train)
knn_clf.score(X_test_standard, y_test)

运行结果:

展开阅读全文
©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读