困固加强理解 map,pr,准确率,召回率 困固加强理解 map,pr,准确率,召回率准确率和召回率的时候可以拿口罩检测做类别TF,预测的是否对PN,是否带口罩就戴口罩为视角:把戴口罩当成不戴口罩,戴口罩识别的准确率问题。把不戴口罩当成戴口罩,戴口罩识别的召回率问题。为了综合考评:准确率高,召回率高,相加不就好了,F1,近似于相加,分母相加,分子相加。进一步,计算pr曲线的面积,也就是希望面积越大,约近似于1的平方,也就是召回率最大时,准确率最大,都接近于1时最好.map,把所有类别的pr曲线下面积相加求平均的指标。给别人解释的时候,可
yolov5,android部署注意点 yolov5实践纪录,模型训练训练时需要修改的几个地方,不论如何,先git下载代码,然后下载单独的模型,在根目录下yolov5s.pt文件。data文件夹下修改,yaml文件举例:train: ../train/imagesval: ../valid/imagesnc: 2names: ['mask', 'no-mask']数据集格式labels每个文件和images每个图片原文件相同,文件内容,每行包含识别的标签,和每个预测框的初始坐标和长宽。一个文件可以包含多行,即包含多
PuTTY ssh免费远程连接工具 SSH密码方式登录操作场景本节操作介绍在Windows和Linux环境中使用SSH密码方式远程登录Linux云服务器的操作步骤。前提条件弹性云服务器状态为“运行中”。弹性云服务器已经绑定弹性公网IP,绑定方式请参见绑定弹性公网IP。所在安全组入方向已开放22端口,配置方式请参见配置安全组规则。使用的登录工具(如PuTTY)与待登录的弹性云服务器之间网络连通。例如,默认的22端口没有被防火墙屏蔽。本地使用Windows操作系统如果本地主机为Windows操作系统,可以按照下面方式登录云服务器
量化投资-相对强弱 RPS 下波动率差值策略-号称国信看家策略 策略步骤简介:1、 计算相应指数相对强弱 RPS2、 计算相应指数上行波动率、下行波动率,并计算二者差值3、 计算当天波动率差值的移动均值(天数由 RPS 值确定、RPS 值越大相就取的天数越多4、 观察前一天的(波动率差值的移动均值),如为正就保持持有(或卖入)、否则就保持空仓(或卖出)。5、注:考虑交易成本2015年前(hs300):2006-2015收益:1302.9290000000012006-2022收益:666.7719000000011观察17年以后的变化,收
量化交易获取数据 量化交易获取数据import osimport pandas as pdimport urllibimport tushare as tsimport pandas_datareader.data as webDATA_DIR = 'tmp'if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR)def download_163(datadir, code, dtype, start): print('download: %s
数据生成器迭代问题 数据生成器迭代问题def data_loader(data_path, batch_size, split=0.2): """ description: 从持久化文件中加载数据, 并划分训练集和验证集及其批次大小 :param data_path: 训练数据的持久化路径 :param batch_size: 训练和验证数据集的批次大小 :param split: 训练集与验证的划分比例 :return: 训练数据生成器, 验证数据生成器, 训练数据数量,
pytorch_model下载地址 pytorch_model.bin:BERT_PRETRAINED_MODEL_ARCHIVE_MAP = { 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin", 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/ber
中文汉字码表 [PAD][unused1][unused2][unused3][unused4][unused5][unused6][unused7][unused8][unused9][unused10][unused11][unused12][unused13][unused14][unused15][unused16][unused17][unused18][unused19][unused20][unused21][unused22][unused23][unuse
nlp停用词189. !"$%&’()*+,–.…………./.一.数.日///0123456789:????/::;<?@ALex[]^_`expsubsup|}~·××××ΔΨγμφφ.В——————‘’’‘“””,…………………………………………………………③′∈′|℃Ⅲ↑→∈[∪φ∈≈①②②c③③]④⑤⑥⑦⑧⑨⑩
GPU模型CPU加载 model.load_state_dict(torch.load(model_path)model.load_state_dict(torch.load(model_path,map_location = torch.device(‘cpu’)))
selenium+python自动化测试–环境搭建 from selenium import webdriverimport timedriver = webdriver.Chrome()driver.get("http://www.baidu.com")print(driver.title)driver.find_element_by_id("kw").send_keys("selenium")driver.find_element_by_id("su").click()time.sleep(3)driver.close() 安装:
python录音 博客园Python实现语音识别和语音合成主要借鉴录音# --coding:utf-8--import waveimport pyaudio# 用Pyaudio库录制音频# out_file:输出音频文件名# rec_time:音频录制时间(秒)def audio_record(out_file, rec_time): CHUNK = 1024 FORMAT = pyaudio.paInt16 # 16bit编码格式 CHANNELS = 1 # 单声道