[cryoEM] cryoSPARC入门教程:处理T20S Proteasome

这篇博客详细介绍了冷冻电子显微镜(cryo-EM)的数据处理流程,包括下载数据集、运动矫正、CTF矫正、颗粒挑选、二维分类、重建、细化和锐化等步骤。通过手动和自动挑选颗粒,以及对挑选结果的检查,确保了数据质量。在分类过程中,选取了清晰的颗粒类别,并用这些模板进行自动挑选。最后,通过一系列的图像处理技术,生成了高分辨率的map并进行了检查。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

官方教程指路

  1. 创建新的job(快捷键:N)
  2. 在该job中,创建新的workspace(快捷键:N)
  3. 下载数据集(约8G)。命令:cryosparcm downloadtest,然后解压tar -xf empiar_10025_subset.tar
  4. 导入Movies
  5. 运动矫正。
  6. CTF矫正。
  7. 颗粒挑选(先手动)
    box size一般设置成颗粒半径的两倍。本例中,在20张图片中挑选出100左右个颗粒。尝试捕捉顶部和侧面视图的多样性。
    左键选中颗粒,右键取消选中。可以使用低通滤波器滑块来调整显微照片的显示,和在需要时调整box size。
  8. 颗粒挑选(基于模板)
    二维分类。(这里分成10类。)然后在分类结果里选择最清晰可靠的几个类(这里分别选择了顶部和侧面两个较清晰的类)。
    然后基于这两个类作为模板,进行自动颗粒挑选。
  9. 检查挑选结果。
    直方图显示了所有拾取位置的统计信息,包括假阳性和真颗粒。真实粒子通常具有较高的NCC评分(表示与模板的形状一致)和较高的功率评分(表示信号的存在)。功率太小的挑选大概率是冰(背景),功率很大的可能是碳边缘、冰晶和堆积的颗粒。
  10. 提取颗粒。从显微照片中提取颗粒。
  11. 二维分类。大约分成50类(≈15min)。
  12. 选择二维分类结果。
  13. 从头开始的重建。
  14. 均匀细化。
  15. 锐化。
    需要输入B-Factor,要是负值。得到map。
  16. 检查流程。tree视图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃吃今天努力学习了吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值