题意:给出一个n,构造一个n的排列(包含1-n的所有数字)使得LIS,LDS的长度和最小
题解:我们可以分block块,LDS的长度就是block,每一个块的长度 nblock n b l o c k 为LIS的长度,我们要最小化 nblock+block n b l o c k + b l o c k ,由均值不等式 a+b≥2∗a∗b−−−−√ a + b ≥ 2 ∗ a ∗ b 可以得到最短的长度为 2∗n−−√ 2 ∗ n ,由此我们知道需要分为 n−−√ n 块,这样结果会最优,如果n不能被正好开根,那么我们优先选择块少的,反之可能会导致块增加大于1。
accode: a c c o d e :
#include <iostream>
#include <stdio.h>
#include <set>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;
const int maxn = 1e7 + 10;
const ll inf = 0x3f3f3f3f;
typedef long double ld;
#define met(a, b) memset(a, b, sizeof(a))
#define rep(i, a, b) for(int i = a; i <= b; i++)
#define per(i, a, b) for(int i = a; i >= b; i--)
#define fi first
#define se second
#define pb push_back
#define mp make_pair
inline ll mul(ll x, ll y, ll mod) {ll res = (x * y - (ll)(ld)(x / mod * y + 1e-8) * mod); return res < 0 ? res + mod : res;}
const double PI = acos(-1.0);
const int mod = 1e9+7;
ll qPow(ll base, ll n) {ll res = 1; while(n) {if(n & 1) res = (res * base); base = (base * base); n >>= 1;} return res;}
char s1[maxn], s2[maxn];
int ans[maxn];
int main() {
int n;
while(~scanf("%d", &n)) {
if(n == 1) {
puts("1");
continue;
}
int tot = 0;
int si = ceil(sqrt(n));
rep(i, 1, si) {
rep(j, 1, si) {
int p = n - i * si + j;
if(p > 0) printf("%d ", p);
tot++;
}
}
rep(i, 1, n - tot) {
printf("%d", i);
if(i != n - tot) printf(" ");
}
puts("");
}
return 0;
}